Generalized quantum electrodynamics: One-loop correction

Author(s):  
David Montenegro

In this paper, we give an update on divergent problems concerning the radiative corrections of quantum electrodynamics in (3[Formula: see text]+[Formula: see text]1) dimensions. In doing so, we introduce a geometric adaptation for the covariant photon propagator by including a higher derivative field. This derivation, so-called generalized quantum electrodynamics, is motivated by the stability and unitarity features. This theory provides a natural and self-consistent extension of the quantum electrodynamics by enlarging the space parameter of spinor-gauge interactions. In particular, Haag’s theorem undermines the perturbative characterization of the interaction picture due to its inconsistency on quantum field theory foundations. To circumvent this problem, we develop our perturbative approach in the Heisenberg picture and use it to investigate the behavior of the operator current at one-loop. We find the two- and three-point correlation functions are ultraviolet finite, electron self-energy and vertex corrections, respectively. On the other hand, we also explain how the vacuum polarization remains ultraviolet divergent only at [Formula: see text] order. Finally, we evaluate the anomalous magnetic moment, which allows us to specify a lower bound value for the Podolsky parameter.

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.


1989 ◽  
Vol 35 (10) ◽  
pp. 972-974 ◽  
Author(s):  
Alain Lamarre ◽  
Pierre J. Talbot

The stability of human coronavirus 229E infectivity was maximum at pH 6.0 when incubated at either 4 or 33 °C. However, the influence of pH was more pronounced at 33 °C. Viral infectivity was completely lost after a 14-day incubation period at 22, 33, or 37 °C but remained relatively constant at 4 °C for the same length of time. Finally, the infectious titer did not show any significant reduction when subjected to 25 cycles of thawing and freezing. These studies will contribute to optimize virus growth and storage conditions, which will facilitate the molecular characterization of this important pathogen.Key words: coronavirus, pH, temperature, infectivity, human coronavirus.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650135 ◽  
Author(s):  
C. A. Cardoso ◽  
J. A. Langa ◽  
R. Obaya

In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.


2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Josef Diblík ◽  
Denys Ya. Khusainov ◽  
Irina V. Grytsay ◽  
Zdenĕk Šmarda

Many processes are mathematically simulated by systems of discrete equations with quadratic right-hand sides. Their stability is thought of as a very important characterization of the process. In this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete autonomous systems in a critical case in the presence of a simple eigenvalueλ=1of the matrix of linear terms. In addition to the stability investigation, we also estimate stability domains.


2018 ◽  
Vol 778 ◽  
pp. 181-186 ◽  
Author(s):  
Tayyaba Malik ◽  
Shayan Naveed ◽  
Muhammad Muneer ◽  
Mohammad Ali Mohammad

Recently, supercapacitors have attracted a tremendous amount of attention as energy-storage devices due to their high-power density, fast charge–discharge ability, excellent reversibility, and long cycling life. In this research work, we demonstrate a laser scribed super capacitor based on polyimide (PI) substrate for the storage of electrical energy. PI substrate of thickness 200μm and area 1cm × 1cm was reduced by a laser engraver with a 450 nm wavelength in the form of stackable supercapacitor electrodes. Although, PI itself exhibits non-conductive behavior; however, by laser irradiation we change the surface properties of PI and reduce its resistance. The chemical property of irradiated PI was characterized with XRD where the carbon peak was observed at 2*theta = 25.44, which confirms the reduction of PI material in to a graphene-like substance. The electrical conductivity was analyzed with a probe station and observed to be 1.6mS. Two conductive regions were assembled into a capacitor device by sandwiching a PVA/H3PO4 electrolyte in between. During the charging and discharging characterization of the capacitor device, current density was observed to be 1.5mA/cm2. Capacitance versus voltage analysis was carried out and the device showed 75mF/cm2 against a voltage sweep of ±2V. The galvanostatic charging and discharging curve shows a symmetric behavior with respect to time exhibiting the stability and durability of the device.


Sign in / Sign up

Export Citation Format

Share Document