THEORY OF WEAK INTERACTIONS: RECENT DEVELOPMENT AND PROBLEMS

1988 ◽  
Vol 03 (12) ◽  
pp. 2769-2826 ◽  
Author(s):  
M.A. SHIFMAN

Accumulation of theoretical experience, on one hand, and experimental data, on the other, resulted in a considerable progress in weak interactions. The current literature concentrates mainly on such issues as the study of the Kobayashi-Maskawa matrix and the application of quantum chromodynamics to concrete processes. Here I discuss the most interesting developing fields referring both to old (light) and new (heavy) hadrons. The first part is devoted to [Formula: see text] oscillations and other processes of the second order yielding information on Vbu and the t quark mass. The second and the largest part describes the modern QCD-based approaches in the traditional problems (K meson and hyperon physics) and in new problems associated with heavy quarks.

Author(s):  
Yasser Hannachi

In this paper, removal of Ni (II) from aqueous solution by finely ground waste sludge (FGWS) was investigated. Waste sludge samples obtained from a varnishes and lacquers industry wastewater treatment plant was dried, ground and pre-treated with 1% H2O2 to improve the biosorption capacity. Kinetics of nickel biosorption onto FGWS was investigated by using the FGWS samples with particle size of 62.2 µm. The pseudo-first and second order rate expressions were used to correlate the experimental data. The kinetic constants were determined for both models and the second order rate expression was found to be more suitable. Three different biosorption isotherms were used to correlate the equilibrium biosorption data and the isotherm constants were determined. The Langmuir isotherm was found to fit the experimental data better than the other tested isotherms. The biosorption capacity (qm) and saturation constant (K) for the Langmuir isotherm showed that finely ground waste sludge has the largest capacity and affinity for removal of Ni(II) compared to the other Activated sludges. Santrauka Nagrinėjami Ni(II) šalinimo iš vandeninių tirpalų smulkiai sumaltu nuotekų dumblu (SSND) tyrimų rezultatai. Nuotekų dumblo pavyzdžiai imti iš glazūravimo ir lakavimo pramonės nuotekų valymo įrenginių, išdžiovinti, susmulkinti ir apdoroti 1% H2O2, kad padidėtų biosorbcijos tūris. Nikelio sorbcijos SSND kinetika tirta naudojant SSND bandinius, kurių dalelių dydis 62,2 µm. Pseudo pirmojo ir antrojo laipsnio greičio išraiškos buvo taikomos eksperimentinių duomenų koreliacijai apibrėžti. Kinetinė konstanta nustatyta abiejų modelių, tačiau antrojo laipsnio greičio išraiška buvo tinkamesnė. Pagal tris skirtingas biosorbcijos izotermes nustatyta biosorbcijos pusiausvyros duomenų koreliacija, rastos izotermių konstantos. Langmiuro (Langmuir) izotermė geriau atitiko eksperimentinius duomenis nei kitos tirtosios izotermės. Pagal Langmiuro izotermę biosorbcijos geba (q m) ir prisotinimo konstanta (K) rodė, kad smulkiai sumalto nuotekų dumblo geba šalinti Ni(II) yra didžiausia, palyginti su kitos rūšies aktyvintojo dumblo. Резюме Исследуется удаление Ni(II) из водных растворов мелко измельченным илом стоков (МИИС). Образцы ила стоковбыли взяты из оборудования по очистке стоков в промышленности по глазурованию и лакованию. Затем образцы были высушены, измельчены и обработаны 1-процентным H2O2, с целью увеличить объем биосорбции. Кинетика сорбции никеля МИИС исследовалась с применением образцов МИИС, величина частиц которых составляла62,2 μм. Выражения скорости псевдопервой и псевдовторой степени использовались для определения корреляции экспериментальных данных. Кинетическая константа была установлена для обеих моделей. Однако выражение скорости второй степени оказалось более приемлемым. Три разные изотермы биосорбции применялись для определения корреляции данных по равновесию биосорбции и констант изотерм. Изотерма Langmuir лучше совпала с экспериментальными данными, чем другие испытуемые изотермы. Способность биосорбции (q m) изотермы Langmuir и константа насыщения (K) показали, что мелко измельченный ил стоков обладает наибольшей способностью удалять Ni(II) по сравнению с другими видами активированного ила.


1982 ◽  
Vol 60 (8) ◽  
pp. 1163-1167
Author(s):  
Gerry McKeon

Recently Altarelli, Curci, Martinelli, and Petrarca have calculated the second order corrections induced by quantum chromodynamics to the effective weak Hamiltonian in Δc = 1 processes. We extend their analysis by including the effects of the heavy t and b quarks. The technique used is that first introduced by Witten to study the effects of heavy quarks in deep inelastic scattering and used by Gilman and Wise and Guberina and Peccei to discuss how quark masses alter the effective weak Hamiltonian to leading order in [Formula: see text] processes.


1998 ◽  
Vol 13 (13) ◽  
pp. 2201-2215 ◽  
Author(s):  
TATSUO KOBAYASHI ◽  
ZHI-ZHONG XING

Four simple but realistic patterns of quark mass matrices are derived from orbifold models of superstring theory in the absence of gauge symmetries. Two of them correspond to the Ramond–Roberts–Ross types, which have five texture zeros in up and down quark sectors. The other two, with four texture zeros, preserve the structural parallelism between up and down sectors. The phenomenological consequences of these mass matrices on flavor mixing and CP violation are analyzed at the weak scale. With the same input values of quark mass ratios, we find that only one or two of the four patterns can be in good agreement with current experimental data.


Author(s):  
L. X. Gutiérrez-Guerrero ◽  
Jesús Alfaro ◽  
A. Raya

In this paper, the mass spectra of mesons with one or two heavy quarks and their diquarks partners are estimated within a nonrelativistic framework by solving Schrödinger equation with an effective potential inspired by a symmetry preserving Poincaré covariant vector–vector contact interaction model of quantum chromodynamics. Matrix Numerov method is implemented for this purpose. In our survey of mesons with heavy quarks, we fix the model parameter to the masses of groundstates and then extend our calculations for radial excitations and diquarks. The potential model used in this work gives results which are in good agreement with experimental data and other theoretical calculations.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Laine

Abstract Studying the diffusion and kinetic equilibration of heavy quarks within a hot QCD medium profits from the knowledge of a coloured Lorentz force that acts on them. Starting from the spatial components of the vector current, and carrying out two matching computations, one for the heavy quark mass scale (M) and another for thermal scales $$ \left(\sqrt{MT},T\right) $$ MT T , we determine 1-loop matching coefficients for the electric and magnetic parts of a Lorentz force. The magnetic part has a non-zero anomalous dimension, which agrees with that extracted from two other considerations, one thermal and the other in vacuum. The matching coefficient could enable a lattice study of a colour-magnetic 2-point correlator.


2015 ◽  
Vol 36 (4) ◽  
pp. 228-236 ◽  
Author(s):  
Janko Međedović ◽  
Boban Petrović

Abstract. Machiavellianism, narcissism, and psychopathy are personality traits understood to be dispositions toward amoral and antisocial behavior. Recent research has suggested that sadism should also be added to this set of traits. In the present study, we tested a hypothesis proposing that these four traits are expressions of one superordinate construct: The Dark Tetrad. Exploration of the latent space of four “dark” traits suggested that the singular second-order factor which represents the Dark Tetrad can be extracted. Analysis has shown that Dark Tetrad traits can be located in the space of basic personality traits, especially on the negative pole of the Honesty-Humility, Agreeableness, Conscientiousness, and Emotionality dimensions. We conclude that sadism behaves in a similar manner as the other dark traits, but it cannot be reduced to them. The results support the concept of “Dark Tetrad.”


2016 ◽  
pp. 4115-4125
Author(s):  
Argha Deb

The event-by-event fluctuation of hadronic patterns is investigated by finding a measure of the non-hadronic regions, the voids, for the experimental data of p-AgBr interactions at 400 GeV/c considering the anisotropy of phase space. Two moments of the event-to-event fluctuation of voids, <Gq> and Sq have been calculated as defined by R. C. Hwa and Q. H. Zhang to quantify the dependence of the voids on the bin sizes. The results suggest that no quark-hadron phase transition of second order have taken place for p-AgBr interactions at 400 GeV/c. The result have been compared with the result of VENUS generated data.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Osama Moaaz ◽  
Choonkil Park ◽  
Elmetwally M. Elabbasy ◽  
Waed Muhsin

AbstractIn this work, we create new oscillation conditions for solutions of second-order differential equations with continuous delay. The new criteria were created based on Riccati transformation technique and comparison principles. Furthermore, we obtain iterative criteria that can be applied even when the other criteria fail. The results obtained in this paper improve and extend the relevant previous results as illustrated by examples.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Wen Qin ◽  
Ling-Yun Dai ◽  
Jorge Portolés

Abstract A coherent study of e+e− annihilation into two (π+π−, K+K−) and three (π+π−π0, π+π−η) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E ≲ 2 GeV. The work of [L.Y. Dai, J. Portolés, and O. Shekhovtsova, Phys. Rev. D88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 ± 7.4) × 10−10 (2.9σ) from the experimental value.


1995 ◽  
Vol 74 (6) ◽  
pp. 2665-2684 ◽  
Author(s):  
Y. Kondoh ◽  
Y. Hasegawa ◽  
J. Okuma ◽  
F. Takahashi

1. A computational model accounting for motion detection in the fly was examined by comparing responses in motion-sensitive horizontal system (HS) and centrifugal horizontal (CH) cells in the fly's lobula plate with a computer simulation implemented on a motion detector of the correlation type, the Reichardt detector. First-order (linear) and second-order (quadratic nonlinear) Wiener kernels from intracellularly recorded responses to moving patterns were computed by cross correlating with the time-dependent position of the stimulus, and were used to characterize response to motion in those cells. 2. When the fly was stimulated with moving vertical stripes with a spatial wavelength of 5-40 degrees, the HS and CH cells showed basically a biphasic first-order kernel, having an initial depolarization that was followed by hyperpolarization. The linear model matched well with the actual response, with a mean square error of 27% at best, indicating that the linear component comprises a major part of responses in these cells. The second-order nonlinearity was insignificant. When stimulated at a spatial wavelength of 2.5 degrees, the first-order kernel showed a significant decrease in amplitude, and was initially hyperpolarized; the second-order kernel was, on the other hand, well defined, having two hyperpolarizing valleys on the diagonal with two off-diagonal peaks. 3. The blockage of inhibitory interactions in the visual system by application of 10-4 M picrotoxin, however, evoked a nonlinear response that could be decomposed into the sum of the first-order (linear) and second-order (quadratic nonlinear) terms with a mean square error of 30-50%. The first-order term, comprising 10-20% of the picrotoxin-evoked response, is characterized by a differentiating first-order kernel. It thus codes the velocity of motion. The second-order term, comprising 30-40% of the response, is defined by a second-order kernel with two depolarizing peaks on the diagonal and two off-diagonal hyperpolarizing valleys, suggesting that the nonlinear component represents the power of motion. 4. Responses in the Reichardt detector, consisting of two mirror-image subunits with spatiotemporal low-pass filters followed by a multiplication stage, were computer simulated and then analyzed by the Wiener kernel method. The simulated responses were linearly related to the pattern velocity (with a mean square error of 13% for the linear model) and matched well with the observed responses in the HS and CH cells. After the multiplication stage, the linear component comprised 15-25% and the quadratic nonlinear component comprised 60-70% of the simulated response, which was similar to the picrotoxin-induced response in the HS cells. The quadratic nonlinear components were balanced between the right and left sides, and could be eliminated completely by their contralateral counterpart via a subtraction process. On the other hand, the linear component on one side was the mirror image of that on the other side, as expected from the kernel configurations. 5. These results suggest that responses to motion in the HS and CH cells depend on the multiplication process in which both the velocity and power components of motion are computed, and that a putative subtraction process selectively eliminates the nonlinear components but amplifies the linear component. The nonlinear component is directionally insensitive because of its quadratic non-linearity. Therefore the subtraction process allows the subsequent cells integrating motion (such as the HS cells) to tune the direction of motion more sharply.


Sign in / Sign up

Export Citation Format

Share Document