NOVEL SOUND PHENOMENA IN IMPURE SUPERFLUIDS

2006 ◽  
Vol 20 (03) ◽  
pp. 355-380
Author(s):  
PETER BRUSOV ◽  
PAVEL BRUSOV

In the last decade, new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities, superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and show that this coupling increases significantly. This leads to the existence in impure superfluids of such unusual sound phenomena as slow "pressure" waves and fast "temperature" waves. This also decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by high intensity waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which has never been observed in superfluids) could be observed in impure superfluids. Even the nature of the sound modes in impure superfluids turns out to be changed. We have also derived for the first time the nonlinear hydrodynamic equations for superfluid helium in aerogel.

2019 ◽  
Vol 36 (2) ◽  
pp. 21-22
Author(s):  
Ray Harper

Purpose The purpose of this paper is to summarise a number of presentations at Day 1 of the Internet Librarian International conference, London, UK (16 October 2018). This was the 20th conference in the series, and the three key themes included were the next-gen library and librarian; understanding users, usage and user experience; and inclusion and inspiration: libraries making a difference. Design/methodology/approach This paper reports from the viewpoint of a first-time attendee of the conference. This summarises the main issues raised by each presentation and draws out the key learning points for practical situations. Findings The conference covered a variety of practical ways in which libraries can use technology to support users and make decisions about services. These include developing interactive physical spaces which include augmented reality; introducing “chat-bots” to support users; using new techniques to analyse data; and piloting new ways to engage users (such as coding clubs). A key theme was how we use and harness data in a way that is ethical, effective and relevant to library services. Originality/value This conference focussed on practical examples of how library and information services across sectors and countries are innovating in a period of huge change. The conference gave delegates numerous useful ideas and examples of best practice and demonstrated the strength of the profession in adapting to new technologies and developments.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Angela M. Kavanagh ◽  
Alysha G. Elliott ◽  
Bing Zhang ◽  
Soumya Ramu ◽  
...  

AbstractAntimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the ‘urgent threat’ pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


1995 ◽  
Vol 400 ◽  
Author(s):  
R.T. Malkhassian

AbstractA new technology for obtainment of amorphous single-component metals is presented.For the first time the reduction of molybdenum oxide with formation of its amorphous phase is realized in conditions of a given quantum-chemical technology by means of vibrationally excited to the third quantum level hydrogen molecules with 1.5 ± 0.2 eV energy. The evidences of formation of this nonequilibrium amorphous phase are presented along with certain physicochemical properties of the obtained amorphous molybdenum.A model is proposed for the origin of amorphous phase under the influence of nonequilibrium quantum-chemical technology.


2019 ◽  
Vol 23 ◽  
pp. 201-212
Author(s):  
Shivkumari Panda ◽  
Dibakar Behera ◽  
Tapan Kumar Bastia

This chapter presents the preparation and characterization of some unique properties of nanocomposites by dispersing graphite flakes in commercial unsaturated polyester (UPE) matrix. The composite was prepared by a novel method with the use of solvent swelling technique. Three different specimens of UPE/graphite nanocomposites were fabricated with addition of 1, 2 and 3 wt% of graphite flakes. Except mechanical, viscoelastic and thermo gravimetric properties, transport properties like electrical conductivity, thermal conductivity and water transport properties were studied for the first time. Graphite flakes propose enhanced properties to the composites suggesting homogeneous distribution of the nanofiller in the matrix and strong interaction with the matrix. 2wt% nanofiller loading showed superior essential characteristics and after that the properties reduced may be due to the nucleating tendency of the nanofiller particles. The XRD pattern showed the compatibility of the graphite flakes by introducing a peak around 26.550 in the nanocomposites. SEM Properties are also in agreement with the compatibility. Nanocomposite with 2wt% graphite also showed remarkable enhancement in transport, mechanical, viscoelastic and thermo gravimetric properties. So by introduction of a small quantity of graphite endow the new class of multiphase nanocomposites with inimitable structure and tremendous application.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1221
Author(s):  
Juan Luis Cano ◽  
Angel Mediavilla ◽  
Antonio Tazon

This work introduces a simplified multi-aperture iris notch suitable for designing waveguide filters having an extremely improved compactness/rejection ratio, regarding available solutions, and adequate pass-band performances. The proposed iris architecture, analyzed for the first time, exhibits a unique transmission zero in the waveguide mono-mode bandwidth which can be easily located below or above the pass-band. The frequency of this transmission zero is evaluated in terms of the iris dimensions thus providing useful guidelines for designing filters with suitable responses. As a consequence of this simplified topology, any designed filter can be easily manufactured by cutting along its E-field symmetry plane. This strategy greatly improves the filter’s insertion loss regarding classical implementations based on more complicated arrangements with piled thin metallic sheets. Two exemplary filters have been designed and tested to be used in a high-performance X-band SATCOM terminal with an 80% size reduction with respect to the existing systems. Both filters covering the Rx (7.25–75 GHz) and Tx (7.9–8.4 GHz) sub-bands show a reflection of −25 dB with insertion losses below 1 dB in the pass-band, whereas they present a very sharp out-of-band rejection of at least 90 dB, that is, a 600 dB/GHz slope at X band.


2020 ◽  
Vol 7 (2) ◽  
pp. 592-597 ◽  
Author(s):  
Zhongbo Zhang ◽  
Jifu Zheng ◽  
Kasun Premasiri ◽  
Man-Hin Kwok ◽  
Qiong Li ◽  
...  

For the first time, sulfonylated polymers of intrinsic microporosity (PIMs) are exploited for high-κ, high-temperature, and low-loss gate dielectric applications.


2014 ◽  
Vol 10 (1) ◽  
pp. 20130926 ◽  
Author(s):  
Tamás Faragó ◽  
Attila Andics ◽  
Viktor Devecseri ◽  
Anna Kis ◽  
Márta Gácsi ◽  
...  

Humans excel at assessing conspecific emotional valence and intensity, based solely on non-verbal vocal bursts that are also common in other mammals. It is not known, however, whether human listeners rely on similar acoustic cues to assess emotional content in conspecific and heterospecific vocalizations, and which acoustical parameters affect their performance. Here, for the first time, we directly compared the emotional valence and intensity perception of dog and human non-verbal vocalizations. We revealed similar relationships between acoustic features and emotional valence and intensity ratings of human and dog vocalizations: those with shorter call lengths were rated as more positive, whereas those with a higher pitch were rated as more intense. Our findings demonstrate that humans rate conspecific emotional vocalizations along basic acoustic rules, and that they apply similar rules when processing dog vocal expressions. This suggests that humans may utilize similar mental mechanisms for recognizing human and heterospecific vocal emotions.


2019 ◽  
Vol 490 (3) ◽  
pp. 3112-3133 ◽  
Author(s):  
J Jacquemin-Ide ◽  
J Ferreira ◽  
G Lesur

Abstract Semi-analytical models of disc outflows have successfully described magnetically driven, self-confined super-Alfvénic jets from near-Keplerian accretion discs. These jet-emitting discs (JEDs) are possible for high levels of disc magnetization μ defined as μ = 2/β, where beta is the usual plasma parameter. In near-equipartition JEDs, accretion is supersonic and jets carry away most of the disc angular momentum. However, these solutions prove difficult to compare with cutting-edge numerical simulations, for the reason that numerical simulations show wind-like outflows but in the domain of small magnetization. In this work, we present for the first time self-similar isothermal solutions for accretion–ejection structures at small magnetization levels. We elucidate the role of magnetorotational instability-like (MRI) structures in the acceleration processes that drive this new class of solutions. The disc magnetization μ is the main control parameter: Massive outflows driven by the pressure of the toroidal magnetic field are obtained up to μ ∼ 10−2, while more tenuous centrifugally driven outflows are obtained at larger μ values. The generalized parameter space and the astrophysical consequences are discussed. We believe that these new solutions could be a stepping stone in understanding the way astrophysical discs drive either winds or jets. Defining jets as self-confined outflows and winds as uncollimated outflows, we propose a simple analytical criterion based on the initial energy content of the outflow, to discriminate jets from winds. We show that jet solution is achieved at all magnetization levels, while winds could be obtained only in weakly magnetized discs that feature heating.


2019 ◽  
Vol 55 (100) ◽  
pp. 15113-15116 ◽  
Author(s):  
Li-Dan Lin ◽  
Zhong Li ◽  
Jin-Hua Liu ◽  
Yan-Qiong Sun ◽  
Xin-Xiong Li ◽  
...  
Keyword(s):  
New Type ◽  

In this work, an unusual high-valent Sb(v)-based [SbL2]− unit was developed for the first time to combine with various cuprous-halide clusters for the construction of a brand-new class of heterometallic MOFs.


Sign in / Sign up

Export Citation Format

Share Document