TEXTURE AND FORMABILITY DEVELOPMENT OF ASYMMETRY ROLLED AA 3003 AL ALLOY SHEET

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5895-5900 ◽  
Author(s):  
INSOO KIM ◽  
SAIDMUROD AKRAMOV ◽  
HAE BONG JEONG

The physical, mechanical properties and formability of sheet metal depend on preferred crystallographic orientations (texture). In this research work, we investigated texture development and formability of AA 3003 aluminum alloy sheets after asymmetry rolling and subsequent heat treatment. After asymmetry rolling, the specimens showed fine grain size. We also investigated the change of the plastic strain ratios after asymmetry rolling and subsequent heat-treating condition. The plastic strain ratios of asymmetrically rolled and subsequent heat treated samples are 1.5 times higher than the initial AA 3003 Al alloy sheets. These could be attributed to the formation of ND//<111> texture component through asymmetry rolling in Al sheet.

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5931-5936 ◽  
Author(s):  
INSOO KIM ◽  
SAIDMUROD AKRAMOV ◽  
HAE BONG JEONG ◽  
TAE KYOUNG NO

The microstructure, pole figure and r -value of the frictionally rolled and subsequently heat treated AA 5052 Al sheets were investigated by optical microscopy, x-ray diffractometer and tensile tester, respectively. Frictionally rolled AA 5052 Al specimens showed a fine grain size. After subsequently heat treated specimens, the ND//<111> texture component was increased. The r -values of the frictionally rolled and subsequently heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of ND//<111> texture components through frictional rolling in and subsequent heat treatment of AA 5052 Al sheet.


2005 ◽  
Vol 475-479 ◽  
pp. 81-84
Author(s):  
Sung Kang Hur ◽  
Kee Sam Shin ◽  
Jung Hoon Yoo ◽  
Ja Min Koo ◽  
Soo Lee ◽  
...  

The evolution of microstructure and its effects on the mechanical properties of modified 9%Cr-1%Mo steel during heat-treating at 1050°C for 15 min and then isothermal heat treatment at 380~760°C with subsequent air-cooling have been investigated. For the microstructural and mechanical property analyses, OM, SEM, EDS, XRD, hardness and impact tests were used. In accordance with the severity of the heat-treatment, the microstructure evolved from the untransformed martensite to the partially transformed dual phases of martensite and ferrite, and then fully transformed to ferrite. Impact values at ambient temperature for specimens isothermally heat-treated at 320 - 380°C, predominantly at about 350°C were lower than others’ with similar martensitic structure. The partially transformed specimens with dual phases of martensite and ferrite also showed lower impact values than samples with untransformed with martensitic, and transformed with ferritic structures.


2013 ◽  
Vol 765 ◽  
pp. 434-438 ◽  
Author(s):  
Adam S. Taylor ◽  
Matthias Weiss ◽  
Tim Hilditch ◽  
Peter D. Hodgson ◽  
Nicole Stanford

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).


2014 ◽  
Vol 59 (1) ◽  
pp. 371-375
Author(s):  
B. Płonka ◽  
P. Korczak ◽  
K. Remsak ◽  
M. Lech-Grega

Abstract The paper presents the results of the die forging tests of a modified EN AW-6101 alloy with the addition of Zr, using two types of the feedstock materials. The first feedstock materials were ingots cast in a vertical semi-continuous process, the second feedstock materials were extruded rods. The die forging process was carried with parameters enabling “on line” heat treatment (T5 temper). For comparison, forgings were also heat treated to the T6 temper and to thermo-mechanical treated to the T8 and T9 temper. Then forgings made from both feedstock materials were characterised in terms of structure, mechanical properties and electrical conductivity.


Alloy Digest ◽  
1957 ◽  
Vol 6 (11) ◽  

Abstract JALLOY 1 is a fine grain, high quality steel for jobs where formability is an important consideration or where use of a low carbon steel with good mechanical properties before or after heat treatment are desired. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: SA-3. Producer or source: Jones & Laughlin Steel Corporation. Originally published November 1952, revised November 1957.


2021 ◽  
Vol 309 ◽  
pp. 01078
Author(s):  
O. M. Ikumapayi ◽  
E. T. Akinlabi ◽  
V. O. Anyoha ◽  
I. D. Uchegbu ◽  
O. L. Rominiyi ◽  
...  

ASTM A36 is the most used type of mild steel especially in construction and manufacturing industry. Welding process is regularly employed to fix the crack that usually occurs in low carbon mild steel after a long time use especially in construction industry. In this study, the effects of heat treatment on the mechanical properties on mild steel [ASTM A36] lap welded joint were investigated. Seven pieces of 60 mm × 300 mm mild steel bar were used for this research. Five samples were heat treated in an electric muffle furnace and soaked at 6000 C for 65 minutes. Two samples were cooled in air and furnace while the remaining three were rapidly quenched in water, spent engine oil and diesel oil each. Hardness and Impact tests specimens were made from the control (as received) sample and the various heat-treated samples. The specimens were joined together using E6361 mild steel arch welding electrode, lap welding joints and Shielded Metal Arc Welding (SMAW). Hardness test and impact test are used to delineate the mechanical properties for heat treated welded specimens and control specimens. It was established from the research work that Brinel Hardness Number (BHN of ASTM A36 lap welded joint cooled/quenched in different media increased it significantly in the Heat affected Zone (HZ) in all the quenching media. There is also a substantial increase in both Impact Energy (IE) and Impact Strength (IS) of heat-treated ASTM A36 lap welded joint when cool/quenched in the air, furnace, water and spent engine oil.


2005 ◽  
Vol 495-497 ◽  
pp. 803-808 ◽  
Author(s):  
Saidmurod Akramov ◽  
Min Gu Lee ◽  
In Soo Kim ◽  
Dong Young Sung ◽  
Byung Hyun Park ◽  
...  

By severe plastic deformation of metals, an ultra fine grain size can be obtained. In the present study an AA 1050 Aluminium alloy has been severe deformed by Equal channel angular pressing (ECAP). A study on the microstructure and the texture of the samples after ECAP and subsequent heat treatment has been carried out. The specimens after ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The {111}<112>, {123}<634>, {110}<001>, {112}<111>, {110}<111>, and {013}<231> texture components were increased in the specimens after the ECAP and subsequent heat-treatment at 400° C for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has been used as a parameter that expresses the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions has been investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment.


2020 ◽  
Vol 11 (3) ◽  
pp. 243-250
Author(s):  
Adebayo Surajudeen Adekunle ◽  
Adekunle Akanni Adeleke ◽  
Peter Pelumi Ikubanni ◽  
Peter Olorunleke Omoniyi ◽  
Tajudeen Adelani Gbadamosi ◽  
...  

AbstractHeat treatment industries require various quenching media to improve the properties of the materials to be quenched. Petroleum based mineral (PBM) oil, a non-biodegradable oil, is popular amongst others quenchants in heat treatment processes. Recently, biodegradable oils mostly in their raw, unblended and unbleached forms have been employed for quenching of various engineering materials. Therefore, the present study examined the effects of some selected bio-quenchants in blended raw (BR) and blended bleached (BB) forms on the mechanical properties and microstructure of solution heat treated aluminum (Al)-alloy. Edible vegetable oil (70% by volume) was blended with 30% by volume of jatropha oil to form the bio-quenchant oils. Another set of bio-quenchants were formed by bleaching the raw oils before mixing so as to reduce the oxidation level and contaminations in the oil. The Al-alloy is solution heat treated at 500 °C and soaked for 15 min in an electric muffle furnace before quenching in the various established bio-quenchants. Results showed that samples treated in blended raw melon (BRM) oil have higher tensile strength of 151.76 N/mm2 while samples quenched in blended bleached melon (BBM) oil have higher hardness value of 61.00 HRC. In accordance to the results obtained the bio-quenchants were found to be effective replacement to the PBM oil.


2013 ◽  
Vol 753 ◽  
pp. 501-504 ◽  
Author(s):  
Hiroaki Kusuhara ◽  
Munetoshi Noguchi ◽  
Masafumi Noda ◽  
Hisashi Mori ◽  
Kunio Funami

The good formability and corrosion resistance of 6N01 Al alloy allow it to be utilized in high-speed train systems, and weight reduction of railway vehicles is possible by improving the strength of this alloy. This study examined the effect of the fine-grained structure on the mechanical properties of the alloy formed by a combination of heat treatment and severe plastic deformation such as forging and rolling. The role of the fine-grained structure in determining the plastic formability was also investigated. The 0.2% proof stress and tensile strength of the heat-treated and multi-axial alternative forging (MAF) processed materials were both greater than 300 MPa. Subsequent cold rolling of these alloys increased both the 0.2% proof stress and tensile strength to over 450 MPa with a grain size of less than 1 μm. The fine-grained structure was confirmed to be effective in improving the strength of the 6N01 Al alloy.


2017 ◽  
Vol 873 ◽  
pp. 60-64 ◽  
Author(s):  
In Soo Kim ◽  
Su Kwon Nam ◽  
Dong Nyung Lee

AA6061 Al alloy sheet was prepared by warm and hot asymmetric rolling at the temperature from 200 to 600°C. Pole figures of warm and hot asymmetric rolled AA6061 Al sheets were measured by X-ray diffractometer (XRD). Orientation distribution function (ODF) and the plastic strain ratio (R-value) were calculated. The calculated plastic strain ratio of starting sample was compared with those of different temperature warm and hot asymmetrically rolled samples. The plastic strain ratios of warm and hot asymmetrically rolled under different temperature and subsequently heat treated AA6061 Al sheets were shown higher than that of starting sample, but ΔRvalues expect 600°C were lower than that of starting sample.


Sign in / Sign up

Export Citation Format

Share Document