scholarly journals Effects of Heat Treatment on the Impact and Hardness Properties of Mild Steel [ASTM 36] Lap Welded Joint

2021 ◽  
Vol 309 ◽  
pp. 01078
Author(s):  
O. M. Ikumapayi ◽  
E. T. Akinlabi ◽  
V. O. Anyoha ◽  
I. D. Uchegbu ◽  
O. L. Rominiyi ◽  
...  

ASTM A36 is the most used type of mild steel especially in construction and manufacturing industry. Welding process is regularly employed to fix the crack that usually occurs in low carbon mild steel after a long time use especially in construction industry. In this study, the effects of heat treatment on the mechanical properties on mild steel [ASTM A36] lap welded joint were investigated. Seven pieces of 60 mm × 300 mm mild steel bar were used for this research. Five samples were heat treated in an electric muffle furnace and soaked at 6000 C for 65 minutes. Two samples were cooled in air and furnace while the remaining three were rapidly quenched in water, spent engine oil and diesel oil each. Hardness and Impact tests specimens were made from the control (as received) sample and the various heat-treated samples. The specimens were joined together using E6361 mild steel arch welding electrode, lap welding joints and Shielded Metal Arc Welding (SMAW). Hardness test and impact test are used to delineate the mechanical properties for heat treated welded specimens and control specimens. It was established from the research work that Brinel Hardness Number (BHN of ASTM A36 lap welded joint cooled/quenched in different media increased it significantly in the Heat affected Zone (HZ) in all the quenching media. There is also a substantial increase in both Impact Energy (IE) and Impact Strength (IS) of heat-treated ASTM A36 lap welded joint when cool/quenched in the air, furnace, water and spent engine oil.

2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 753 ◽  
Author(s):  
Kanwal Chadha ◽  
Yuan Tian ◽  
John Spray ◽  
Clodualdo Aranas

In this work, the microstructural features and mechanical properties of an additively manufactured 316L stainless steel have been determined. Three types of samples were characterized: (i) as printed (AP), (ii) annealing heat treated (AHT), and (iii) hot isostatic pressed and annealing heat treated (HIP + AHT). Microstructural analysis reveals that the AP sample formed melt pool boundaries with nano-scale cellular structures. These structures disappeared after annealing heat treatment and hot isostatic pressing. The AP and AHT samples have similar grain morphologies; however, the latter has a lower dislocation density and contains precipitates. Conversely, the HIP + AHT sample displays polygon-shaped grains with twin structures; a completely different morphology compared to the first two samples. Optical micrography reveals that the application of hot isostatic pressing reduces the porosity generated after laser processing. The tensile strengths of all the samples are comparable (about 600 MPa); however, the elongation of the HIP + AHT sample (48%) was superior to that of other two samples. The enhanced ductility of the HIP + AHT sample, however, resulted in lower yield strength. Based on these findings, annealing heat treatment after hot isostatic pressing was found to improve the ductility of as-printed 316L stainless steel by as much as 130%, without sacrificing tensile strength, but the sample may have a reduced (40%) yield strength. The tensile strength determined here has been shown to be higher than that of the hot isostatic pressed, additively manufactured 316L stainless steel available from the literature.


2021 ◽  
Vol 30 (1) ◽  
pp. 291-302
Author(s):  
Alaba Oladeji Araoyinbo ◽  
Ayuba Samuel ◽  
Albakri Mohammed Mustapha Abdullah ◽  
Mathew Biodun

Steel is extensively used in many applications that include construction because of its unique properties and the ease with which its properties can be enhancedfor improved performance. Due to its high malleability and strength, it can be easily machined and welded compared to other types of steel. However, the susceptibility to low performance has been associated with its low resistance to environmental degradation when exposed to corrosive or polluted environments. This study focuses on mild steel heat treatment quenched in four mediums of engine oil, water, palm oil, and air, along with its properties and corrosion susceptibility. The high temperature used for the procedure is 800 °C, 900 °C, and 1000 °C, respectively. After the heat treatment procedure, the test samples undergo corrosion testing in the sodium chloride solution for two weeks to observe the presence of corrosion products rust on its surface. The tensile machine was utilized to obtain the mechanical properties, including yield strength, tensile strength, and percentage elongation. The hardness values were obtained using the Rockwell hardness machine, and the optical microscope (OM) was used to observe the effect of the corrosion activity on the sample surface. The results obtained indicate an increase in the hardness, yield, and tensile strength, but the elongation reduces as the temperature increases.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5895-5900 ◽  
Author(s):  
INSOO KIM ◽  
SAIDMUROD AKRAMOV ◽  
HAE BONG JEONG

The physical, mechanical properties and formability of sheet metal depend on preferred crystallographic orientations (texture). In this research work, we investigated texture development and formability of AA 3003 aluminum alloy sheets after asymmetry rolling and subsequent heat treatment. After asymmetry rolling, the specimens showed fine grain size. We also investigated the change of the plastic strain ratios after asymmetry rolling and subsequent heat-treating condition. The plastic strain ratios of asymmetrically rolled and subsequent heat treated samples are 1.5 times higher than the initial AA 3003 Al alloy sheets. These could be attributed to the formation of ND//<111> texture component through asymmetry rolling in Al sheet.


2010 ◽  
Vol 165 ◽  
pp. 104-109 ◽  
Author(s):  
Vigantas Kumšlytis ◽  
Algirdas Vaclovas Valiulis ◽  
Olegas Černašejus

Presented work analyses the impact of heat treatment parameters on the mechanical properties and operational reliability of P5 (5%Cr0.5%Mo) steel welded joints. The key objects of research are heat-treated chrome-molybdenum steel welded joints and piping elements operated at high temperature for an extensive period of time, where degradation of mechanical properties has been observed. The main objective is to investigate the causes of degradation of alloy steel mechanical properties during fabrication and operation of the equipment, and to develop a methodology for identification of optimum heat treatment parameters for chrome-molybdenum steel welded joints. A few key issues are addressed herein: identification of dependence of chrome-molybdenum (5%Cr-0.5%Mo) steel welded joint mechanical properties on heat treatment parameters, identification of the optimum value of temperature/time parameter, and identification of causes of mechanical property changes and degradation of the steel.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


Author(s):  
Marios Kazasidis ◽  
Elisa Verna ◽  
Shuo Yin ◽  
Rocco Lupoi

AbstractThis study elucidates the performance of cold-sprayed tungsten carbide-nickel coating against solid particle impingement erosion using alumina (corundum) particles. After the coating fabrication, part of the specimens followed two different annealing heat treatment cycles with peak temperatures of 600 °C and 800 °C. The coatings were examined in terms of microstructure in the as-sprayed (AS) and the two heat-treated conditions (HT1, HT2). Subsequently, the erosion tests were carried out using design of experiments with two control factors and two replicate measurements in each case. The effect of the heat treatment on the mass loss of the coatings was investigated at the three levels (AS, HT1, HT2), as well as the impact angle of the erodents (30°, 60°, 90°). Finally, the response surface methodology (RSM) was applied to analyze and optimize the results, building the mathematical models that relate the significant variables and their interactions to the output response (mass loss) for each coating condition. The obtained results demonstrated that erosion minimization was achieved when the coating was heat treated at 600 °C and the angle was 90°.


2011 ◽  
Vol 189-193 ◽  
pp. 3891-3894
Author(s):  
Ya Min Li ◽  
Hong Jun Liu ◽  
Yuan Hao

The casting Fe3Al intermetallics were solidified in sodium silicate sand mould and permanent mould respectively to get different cooling rates. After heat treatment (1000°С/15 h homogenizing annealing + furnace cooling followed by 600°С/1 h tempering + oil quenching), the microstructure and properties of Fe3Al intermetallics were investigated. The results show that the heat-treated Fe3Al intermetallics at higher cooling rate has finer grained microstructure than lower cooling rate, and the lattice distortion increases due to the higher solid solubility of the elements Cr and B at higher cooling rate. The tensile strength and hardness of the Fe3Al intermetallics at higher cooling rate are slightly higher also. However, the impact power of intermetallics at higher cooling rate is 67.5% higher than that at lower cooling rate, and the impact fracture mode is also transformed from intercrystalline fracture at lower cooling rate to intercrystallin+transcrystalline mixed fracture at higher cooling rate.


Sign in / Sign up

Export Citation Format

Share Document