MAGNETIC PROPERTIES, NANOSTRUCTURE AND ORDERING KINETICS OF FePtCu THIN FILMS

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1652-1657 ◽  
Author(s):  
G. J. CHEN ◽  
Y. H. SHIH ◽  
J. S. C. JANG ◽  
S. R. JIAN ◽  
W. C. CHANG ◽  
...  

In this study, the ( FePt )100- x Cu x ( x =0, 4.6, 6.7, 8.8, 10.9) ( FePtCu ) alloy films were prepared by co-sputtering. The effects of Cu addition content and heat treatment on the nanostructure and magnetic properties of the polycrystalline ( FePt )100- x Cu x films are reported. The experimental results show that the ordering temperature of the ( FePt )100- x Cu x ( x =6.7) films reduced to 320°C, which is much lower than that of the FePt alloy. After heat treatment at 600°C for 1 hour, the ( FePt )100- x Cu x ( x =6.7) film shows a coercive force of 15 kOe and the magnetization of 576 emu/cc. The magnetic properties of the FePtCu films can be adjusted by varying the Cu content in the films. The enhancement of the magnetic properties of the FePtCu films mainly resulted from the formation of the order L 10 phase. DSC traces of as-deposited disorder films at different heating rates, to evaluate the crystallization of the order phase, showed that the addition of Cu atoms reduced the activation energy of ordering from 217 kJ/mol to 87 kJ/mol for the ( FePt )100- x Cu x films ( x = 0 and 6.7, respectively). The reduction of the ordering temperature and corresponding activation energy might due to the solid solution of the Cu atoms in the FePt films.

2010 ◽  
Vol 638-642 ◽  
pp. 1743-1748
Author(s):  
G.J. Chen ◽  
Y.H. Shih ◽  
Jason S.C. Jang ◽  
S.R. Jian ◽  
P.H. Tsai ◽  
...  

In this study,the (FePt)94-xCu6Nbx (x=0, 2.87, 4.52, 5.67) alloy films were prepared by co-sputtering. The effects of Nb addition content and heat treatment on the microstructure and magnetic properties of the polycrystalline FePtCu films are reported. Our previous experiments showed that the ordering temperature of the (FePt)94Cu6 films reduced to 320 °C, which is much lower than that of the FePt alloy. However, the grain growth after heat treatment limited the practical application in recording media. By adding the Nb content in the (FePt)94Cu6 film, the grain sizes of the films can be adjusted from 50 to 18nm, even for the films annealed at temperature as high as 600°C. DSC traces of as-deposited disorder films at different heating rates, to evaluate the crystallization of the order phase, revealed that the addition of Nb enhanced the activation energy of ordering from 87 kJ/mol to 288 kJ/mol for the (FePt)94-xCu6Nbx (x=0 and 2.87, respectively) films. The reduction of the grain size and the corresponding increase in the activation energy of the Fe-Pt-Cu-Nb films might result from the precipitation of the Nb atoms around the ordering FePt phase. The (FePt)94-xCu6Nbx (x=2.87) film showed a coercive force of 13.4 kOe and the magnetization of 687 emu/cc.


2018 ◽  
Vol 350 ◽  
pp. 913-917
Author(s):  
YiJui Chiu ◽  
Guo-Ju Chen ◽  
Yung-Hui Shih ◽  
Chih-Li Wang ◽  
Sheng-Rui Jian

Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


2003 ◽  
Vol 260 (3) ◽  
pp. 406-414 ◽  
Author(s):  
L.K.E.B. Serrona ◽  
R. Fujisaki ◽  
A. Sugimura ◽  
T. Okuda ◽  
N. Adachi ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1163 ◽  
Author(s):  
Walid Hikal ◽  
Brandon Weeks

Non-isothermal sublimation kinetics of low-volatile materials is more favorable over isothermal data when time is a crucial factor to be considered, especially in the subject of detecting explosives. In this article, we report on the in-situ measurements of the sublimation activation energy for 2,4,6-trinitrotoluene (TNT) continuous nanofilms in air using rising-temperature UV-Vis absorbance spectroscopy at different heating rates. The TNT films were prepared by the spin coating deposition technique. For the first time, the most widely used procedure to determine sublimation rates using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) was followed in this work using UV-Vis absorbance spectroscopy. The sublimation kinetics were analyzed using three well-established calculating techniques. The non-isothermal based activation energy values using the Ozawa, Flynn–Wall, and Kissinger models were 105.9 ± 1.4 kJ mol−1, 102.1 ± 2.7 kJ mol−1, and 105.8 ± 1.6 kJ mol−1, respectively. The calculated activation energy agreed well with our previously reported isothermally-measured value for TNT nanofilms using UV-Vis absorbance spectroscopy. The results show that the well-established non-isothermal analytical techniques can be successfully applied at a nanoscale to determine sublimation kinetics using absorbance spectroscopy.


2019 ◽  
Vol 956 ◽  
pp. 181-191
Author(s):  
Jian Lin Xu ◽  
Bing Xue Ma ◽  
Cheng Hu Kang ◽  
Cheng Cheng Xu ◽  
Zhou Chen ◽  
...  

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).


2017 ◽  
Vol 898 ◽  
pp. 657-665
Author(s):  
Dao Zhang ◽  
Wang Shu Lu ◽  
Xiao Yan Wang ◽  
Sen Yang

The non-isothermal crystallization kinetics of Mg61Zn35Ca4 glassy alloy prepared via melt-spinning were studied by using isoconversion method. The crystalline characterization of Mg61Zn35Ca4 was examined by X-ray diffraction. Different scanning calorimeter was used to investigate the non-isothermal crystallization kinetics at different heating rates (3-60 K/min). The calculated value of Avrami exponent obtained by Matusita method indicated that the crystalline transformation for Mg61Zn35Ca4 is a complex process of nucleation and growth. The Kissinger-Akahira-Sunose method was used to investigate the activation energy. The activation energy of crystallization varies with the extent of crystallization and hence with temperature. The Sestak-Berggren model was used to describe the non-isothermal crystallization kinetics.


2015 ◽  
Vol 60 (2) ◽  
pp. 1357-1359 ◽  
Author(s):  
Y. Hongbo ◽  
C. Meiling ◽  
W. Xu ◽  
G. Hong

Abstract The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs) was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC) methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min) on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Pakamon Pintana ◽  
Nakorn Tippayawong

Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higherEvalues were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal.


Sign in / Sign up

Export Citation Format

Share Document