FEATURES AND CATALYTIC PROPERTIES OF RhCu: A REVIEW

2010 ◽  
Vol 24 (25n26) ◽  
pp. 5128-5138 ◽  
Author(s):  
SILVIA GONZALEZ ◽  
CARMEN SOUSA ◽  
FRANCESC ILLAS

The study of bimetallic catalysts has scientific and technologic importance because of special catalytic activity towards several reactions. RhCu is an interesting bimetallic system due to combination of the very different catalytic activities of Rh and Cu. The catalytic activity of this bimetallic does not result from simple interpolation of the constituents. In fact, at low Cu content, the catalytic activity of RhCu is superior to that of Rh but when the Cu content is higher the activity decays. This is a curious trend which theoretical works had attempted to explain. This paper reports an overview of the most recent research works about this bimetallic system with emphasis in its especial characteristics.

CrystEngComm ◽  
2014 ◽  
Vol 16 (21) ◽  
pp. 4406-4413 ◽  
Author(s):  
Xiang-Zi Li ◽  
Kong-Lin Wu ◽  
Yin Ye ◽  
Xian-Wen Wei

Ni nanotube (nanorod) arrays are controllably fabricated by a one-step approach, the GDDATG and DDCG growth mechanisms are introduced. The Ni nanostructures present higher catalytic activities for dye degradation, the relationship between structures and catalytic properties is also studied.


1995 ◽  
Vol 12 (2) ◽  
pp. 119-128 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
S. Hammad

Manganese/aluminium mixed oxide solids having the formula 0.2MnCO3/Al2O3 were prepared by mechanical mixing of a known weight of finely powdered manganese carbonate and aluminium hydroxide. The solids obtained were treated with NaNO3 (0.75–6 mol%) solution and dried at 110°C, then calcined in air at 500°C and 800°C for 6 h. The phases produced were identified by XRD analysis. The surface properties (SBET, Vp and r̄) of the pure and doped solids were studied by using N2 adsorption at – 196°C and their catalytic activities were determined by studying the oxidation of CO by O2at 125–300°C. The results obtained reveal that pure and doped mixed solids preheated in air at 500°C and 800°C consist of Mn2O3 (partridgite) and a poorly crystalline γ-alumina. Doping with sodium oxide at 500°C and 800°C resulted in a small decrease (14–19%) in the SBET value of the treated solids. However, this treatment brought about a significant modification in the catalytic activity of the doped solids. Doping with 0.75% Na2O at 500°C led to an increase of about 30–50% in the specific catalytic activity which was found to decrease on increasing the percentage of Na2O above this limit, falling to values smaller than that measured for the undoped catalyst. Doping at 800°C led to a progressive decrease in the activity of the treated solid to an extent proportional to the amount of dopant present. The doping process at 500°C and 800°C did not modify the mechanism of the catalytic reaction but altered the number of catalytically-active sites contributing in the catalysis of CO oxidation by O2 without changing their energetic nature.


2015 ◽  
Vol 778 ◽  
pp. 144-147
Author(s):  
Si Qin Deligen ◽  
Bao Agula

The mesoporous CeO2were prepared via a surfactant-assisted method of nanoparticle assembly, CTAB was used as surfactant. The mesoporous CeO2were used as the supports for preparingxAu/CeO2catalysts by the chemical reduction method, and the catalytic activities of the total oxidation of propane were studied. The prepared catalysts were characterized by XRD, TEM and N2adsorption techniques. The content of Au can affect the catalytic properties of thexAu/CeO2catalysts. 4Au/CeO2exhibited the highest catalytic activity in propane complete oxidation with theT100of 420 °C.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 197 ◽  
Author(s):  
Min Yang ◽  
Genli Shen ◽  
Mi Liu ◽  
Yunfa Chen ◽  
Zhen Wang ◽  
...  

The catalytic activities of CeO2-MnOx composite oxides synthesized through oxalate method were researched. The results exhibited that the catalytic properties of CeO2-MnOx composite oxides were higher than pure CeO2 or MnOx. When the Ceat/Mnat ratio was 3:7, the catalytic activity reached the best. In addition, the activities of CeO2-MnOx synthesized through different routes over benzene oxidation were also comparative researched. The result indicated that the catalytic property of sample prepared by oxalate method was better than others, which maybe closely related with their meso-structures. Meanwhile, the effects of synergistic interaction and oxygen species in the samples on the catalytic ability can’t be ignored.


2009 ◽  
Vol 66 ◽  
pp. 57-60 ◽  
Author(s):  
Xue Hui Huang ◽  
Hao Chen ◽  
Ting Ting Wu

A series of perovskite-like catalusts La4BaCu5-xNixO13+δ (x=0,1,2,3,4,5) were prepared by the citrate method, the structures, forms, properties, and defect structures were studied by means of XRD, SEM, BET and TPD measurements. Meanwhile, their catalytic activities were evaluated by the studying of CO, CH4 oxidation. La4BaCu2Ni3O13+δ shows the highest catalytic activity.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7378
Author(s):  
Kalina Grzelak ◽  
Maciej Trejda

The design of different bimetallic catalysts is an important area of catalytic research in the context of their possible applications in the cascade processes, meeting the requirements of the so-called green chemistry. In this study, such catalysts were obtained by the incorporation of magnesium species into spherical silica, which was in the next step covered with porous silica and modified with ruthenium species. The structure and chemical composition of the materials obtained were determined by XRD measurements, low temperature N2 adsorption/desorption, SEM, ICP-OES and XPS methods. The catalytic activities of materials obtained were tested in 2-propanol decomposition and hydrogenation of levulinic acid. The results obtained confirmed the successful coverage of nanospheres with porous silica. A much higher concentration of ruthenium species was found on the surface of the catalysts than in their bulk. The opposite relationship was observed for magnesium species. The modification of nanospheres with silica had a positive effect on the catalytic activity of the materials obtained. For the most active sample, i.e., Ru/NS/3Mg/NS, 49% of levulinic acid conversion in its hydrogenation process was reported with γ-valerolactone as the only product.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shir Reen Chia ◽  
Saifuddin Nomanbhay ◽  
Mei Yin Ong ◽  
Kit Wayne Chew ◽  
Kuan Shiong Khoo ◽  
...  

Renewable diesel as a potential sustainable energy source in future requires catalysts to convert the feedstocks into end products. Among various type of catalysts, bimetallic catalysts are widely applied in the renewable diesel production due to their unique catalytic properties and enhanced catalytic activities, which differ from their parent monometallic catalysts. This mini review comprised of the brief introduction on technologies in producing renewable diesel and aims to discuss the underneath knowledge of synergistic interactions in bimetallic catalysts that synthesized through various techniques. The novelty of this review reveals the recent development of renewable diesel production, highlighting the mechanisms of bimetallic catalysts in the enhancement of the catalytic activity, and exploring their possibilities as practical solution in industrial production.


2014 ◽  
Vol 1033-1034 ◽  
pp. 95-98
Author(s):  
Peng Yang ◽  
Shi Yu Zhou ◽  
Jia Heng Lei

Mesoporous ceria catalysts were prepared by nanocasting of a mesoporous carbon and KIT-6. The prepared mesoporous ceria catalysts were used to catalyze CO oxidation. The various characterization techniques were employed to study the relationship between catalyst nature and catalytic properties. The results indicate that ceria prepared by using mesoporous carbon as template possess an ordered mesoporous architecture and exhibit much better catalytic activity compared with those prepared by using KIT-6 as template. The residual SiO2from KIT-6 was demonstrated to be the main reason for the much worse catalytic activities by the characterization results of X-ray Fluorescence Spectrometer and FTIR spectra.


1979 ◽  
Vol 44 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
Viliam Múčka

The catalytic properties of two-component catalyst nickel oxide-cadmium oxide with the proportions of the components covering the whole composition region 0-100% were examined by studying the decomposition of hydrogen peroxide in aqueous solution on it. In the range 0-25 mol.% CdO, cadmium oxide is found to affect infavourably the ability of nickel oxide to chemisorb oxygen. The amount of the chemisorbed oxygen increases several times on gamma irradiation of the samples. The effect of cadmium oxide on the catalytic activity of the system shows up in fresh samples only indirectly via the changed amount of the oxygen chemisorbed. In older samples the initial catalytic activity of the system is changed, which can be explained based on the concept of bivalent catalytic centres in terms of the co-action of the catalytic centres of the two oxides, which are in equilibrium. The irradiation of the system under study speeds up the processes leading to the establishing of this equilibrium which is thermally very stable, and results in a substantial increase of the catalytic activity of the samples investigated.


1988 ◽  
Vol 53 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
Viliam Múčka ◽  
Kamil Lang

Some physical and catalytic properties of the two-component copper(II)oxide-chromium(III)oxide catalyst with different content of both components were studied using the decomposition of the aqueous solution of hydrogen peroxide as a testing reaction. It has been found that along to both basic components, the system under study contains also the spinel structure CuCr2O4, chromate washable by water and hexavalent ions of chromium unwashable by water. The soluble chromate is catalytically active. During the first period of the reaction the equilibrium is being established in both homogeneous and heterogeneous catalytic systems. The catalytic activity as well as the specific surface area of the washed solid is a non-monotonous function of its composition. It seems highly probable that the extreme values of both these quantities are not connected with the detected admixtures in the catalytic system. The system under study is very insensitive with regard to the applied doses of gamma radiation. Its catalytic properties are changed rather significantly after the thermal treatment and particularly after the partial reduction to low degree by hydrogen. The observed changes of the catalytic activity of the system under study are very probably in connection with the changes of the valence state of the catalytically active components of the catalyst.


Sign in / Sign up

Export Citation Format

Share Document