Wall pressure unsteadiness in an over-expanded single expansion ramp nozzle

2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040102
Author(s):  
Chengjun He ◽  
Jianqiang Li ◽  
Zhaolin Fan ◽  
Yaohua Li ◽  
Jingmin Liang ◽  
...  

To evaluate the unsteady nature of wall pressure in an over-expanded single expansion ramp nozzle, under fixed nozzle pressure ratio (NPR) of 5.92, 6.55 and 7.19, an experimental investigation has been conducted based on focusing Schlieren techniques and dynamic pressure measurement. For all cases, the results show fully formed restricted shock separation (RSS) on the upper wall, which experiences flow reattachment on the wall downstream of separation resulting in the formation of a separation bubble. The separation mode is also RSS on the lower wall at [Formula: see text]. However, the lower wall pressure is randomly larger or lower than ambient pressure near the nozzle exit at [Formula: see text], the separated shear-layer can intermittently impinge on the lower wall, and the separation mode is partially restricted shock separation (pRSS). At [Formula: see text], the separation flow does not reattach downstream of the lower wall. That is, it occurs free shock separation (FSS).

Author(s):  
Wangzhi Zou ◽  
Xiao He ◽  
Wenchao Zhang ◽  
Zitian Niu ◽  
Xinqian Zheng

The stability considerations of centrifugal compressors become increasingly severe with the high pressure ratios, especially in aero-engines. Diffuser is the major subcomponent of centrifugal compressor, and its performance greatly influences the stability of compressor. This paper experimentally investigates the roles of vanes in diffuser on component instability and compression system instability. High pressure ratio centrifugal compressors with and without vanes in diffuser are tested and analyzed. Rig tests are carried out to obtain the compressor performance map. Dynamic pressure measurements and relevant Fourier analysis are performed to identify complex instability phenomena in the time domain and frequency domain, including rotating instability, stall, and surge. For component instability, vanes in diffuser are capable of suppressing the emergence of rotating stall in the diffuser at full speeds, but barely affect the characteristics of rotating instability in the impeller at low and middle speeds. For compression system instability, it is shown that the use of vanes in diffuser can effectively postpone the occurrence of compression system surge at full speeds. According to the experimental results and the one-dimensional flow theory, vanes in diffuser turn the diffuser pressure rise slope more negative and thus improve the stability of compressor stage, which means lower surge mass flow rate.


Author(s):  
Kuifang Wan ◽  
Yunhan Xiao ◽  
Shijie Zhang

By adding an induced draft fan or exhaust compressor between flue gas condenser and stack to make the turbine expand to a pressure much lower than ambient pressure, this paper actually employed inverted Brayton cycle to solve stack temperature problems after water recovery from Humid Air Turbine (HAT) cycle exhaust gas and compare the effect of different discharging methods on the system’s performance. Comparing with the methods of gas discharged directly or recuperated, this scenario can obtain the highest electrical efficiency under certain pressure ratio and turbine inlet temperature. Due to the introduction of induced draft fan, in spite of one intercooler, there are twice intercoolings during the whole compression since the flue gas condenser is equivalent to an intercooler but without additional pressure loss. So the compression work decreases. In addition, the working pressure of humidifier and its outlet water temperature are lowered for certain total pressure ratio to recover more exhaust heat. These enhance the electrical efficiency altogether. Calculation results show that the electrical efficiency is about 49% when the pressure ratio of the induced draft fan is 1.3∼1.5 and 1.5 percentage points higher than that of HAT with exhaust gas recuperated. The specific works among different discharging methods are very closely. However, water recovery is some extent difficult for HAT employing inverted Brayton cycle.


1989 ◽  
Vol 111 (4) ◽  
pp. 748-754
Author(s):  
V. Salemann ◽  
J. M. Williams

A new method for modeling hot underexpanded exhaust plumes with cold model scale plumes in aerodynamic wind tunnel testing has been developed. The method is applicable to aeropropulsion testing where significant interaction between the exhaust and the free stream and aftbody may be present. The technique scales the model and nozzle external geometry, including the nozzle exit area, matches the model jet to free-stream dynamic pressure ratio to full-scale jet to free-stream dynamic pressure ratio, and matches the model thrust coefficient to full-scale thrust coefficient. The technique does not require scaling of the internal nozzle geometry. A generalized method of characteristic computer code was used to predict the plume shapes of a hot (γ = 1.2) half-scale nozzle of area ratio 3.2 and of a cold (γ = 1.4) model scale nozzle of area ratio 1.3, whose pressure ratio and area ratio were selected to satisfy the above criteria and other testing requirements. The plume shapes showed good agreement. Code validity was checked by comparing code results for cold air exhausting into a quiescent atmosphere to pilot surveys and shadowgraphs of model nozzle plumes taken in a static facility.


Author(s):  
Nikhil Ashokbhai Baraiya ◽  
Baladandayuthapani Nagarajan ◽  
Satynarayanan R. Chakravarthy

In the present work, the proportion of carbon monoxide to hydrogen is widely varied to simulate different compositions of synthesis gas and the potential of the fuel mixture to excite combustion oscillations in a laboratory-scale turbulent bluff body combustor is investigated. The effect of parameters such as the bluff body location and equivalence ratio on the self-excited acoustic oscillations of the combustor is studied. The flame oscillations are mapped by means of simultaneous high-speed CH* and OH* chemiluminescence imaging along with dynamic pressure measurement. Mode shifts are observed as the bluff body location or the air flow Reynolds number/overall equivalence ratio are varied for different fuel compositions. It is observed that the fuel mixtures that are hydrogen-rich excite high amplitude pressure oscillations as compared to other fuel composition cases. Higher H2 content in the mixture is also capable of exciting significantly higher natural acoustic modes of the combustor so long as CO is present, but not without the latter. The interchangeability factor Wobbe Index is not entirely sufficient to understand the unsteady flame response to the chemical composition.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Bai-Tao An ◽  
Jian-Jun Liu

The diffusion hole constructed on a slot-type cross section has the potential to obtain high film cooling performance. However, the end shape of the cross section can greatly affect film cooling characteristics. This study examined eight cases of diffusion slot holes with various cross-sectional end shapes. The comparison of the eight diffusion slot holes and a typical fan-shaped hole was performed with a flat plate model using a three-dimensional (3D) steady computational fluid dynamics (CFD) method. The rectangular cross section had an aspect ratio of about 3.4. The end shape variation can be described based on sidewall contraction location, size, and form. The simulations were performed under an engine-representative condition of mainstream inlet Mach number 0.3 and turbulence intensity 5.2%. The simulated results showed that a strip separation bubble caused by inlet “jetting effect” occurs near the downstream wall of the diffusion slot hole and interacts with the diffusion flow. The different end shape of the rectangular cross section leads to different sidewall static pressure and exit velocity profiles, thereby produces three cooling effectiveness patterns, single-peak, bipeak, and tripeak patterns. The tripeak pattern produces higher cooling effectiveness and relatively uniform film coverage. The structure with moderate contraction and smooth transition on two sides of the downstream wall favors creation of a tripeak pattern. Compared with the fan-shaped hole, the discharge coefficient of diffusion slot hole is slightly small in low pressure ratio range, the pressure loss ratio has little difference.


Sign in / Sign up

Export Citation Format

Share Document