He DIFFRACTION FROM Ag(110) SURFACE

1992 ◽  
Vol 06 (01) ◽  
pp. 109-123
Author(s):  
M. ARTUNÇ ◽  
M. CEYLAN ◽  
N. KOLSUZ

Using the exact close-coupling method we have investigated the diffraction intensities of He atoms from a Ag(110) surface. He-Ag(110) interaction is represented by a corrugated Mie potential. In our calculations we have used three different well depths D. Diffraction intensities were calculated for x = <001> direction. The softness parameter β is optimized for a given incident energy Ei and incident angle θi so as to reproduce the experimental results. Using well depth D and van der Waals constant C3 for six He-metal (Al, Ni, Cu, Ag, Pt, Au) systems we have obtained a relation, D = 0.070C3 − 9.006, between parameters D and C3. Our results are in good agreement with experimental observations.

1991 ◽  
Vol 05 (27) ◽  
pp. 1795-1801 ◽  
Author(s):  
F. GÖĞTAS

The dependence of specular and diffracted probabilities on the incident angle and energy was investigated for He+Cu(110). A new empirical pair potential used in this study gives a good agreement with experimental results.


2010 ◽  
Vol 88 (8) ◽  
pp. 779-786 ◽  
Author(s):  
Xiao-Gang Wang ◽  
Tucker Carrington,

We report calculated microwave and infrared rovibrational transitions of the van der Waals complex He2–OCS. The calculations were done using a product basis, a Lanczos eigensolver, and potentials built from He–OCS, and He–He potential functions taken from the literature. All five of the large amplitude coordinates are treated exactly and calculations are done for J values up to five. All rovibrational levels are converged to 0.001 cm–1 by using basis sets with as many as 87 million funcions. Good agreement is found with previously reported experimental results. Although we assume that the dipole moment is along the OCS axis, we find transitions with appreciable intensity between different torsion states.


2010 ◽  
Vol 24 (11) ◽  
pp. 1111-1126
Author(s):  
H. GOLNABI ◽  
M. RAZANI

In this article, two possible applications of prism-based probes for liquid-switching, level-sensing, and as a refractometer are described. Theoretical formulation is developed for the emergent intensity for each system and possible range of operation for each system is reported. By comparing the theoretical investigations, some hints are given in optimum usage of prism in each case. Variation of the beam divergence, incident angle, and prism glass index are major parameters that are considered in this investigation. The obtained results are compared with some available experimental results and practical points concerning the effective application of each geometry is reported. Theoretical expressions developed here are in good agreement with the experimental measurements.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


Earlier work on condensation phenomena is briefly reviewed, and existing measurements of condensation energies are summarized. Measurements of condensation energies have been made for aluminium, silver and cadmium on glass and for aluminium and silver on single-crystal cleavage surfaces of sodium chloride and potassium bromide. Adhesive energies or binding energies between film and substrate have been calculated in each case. Association energies for nucleation are obtained by difference and shown to be consistent. Results for cadmium show good agreement with earlier work, but results for aluminium do not agree with the earlier results of Rhodin who measured the condensation energies for aluminium on various substrates, obtaining values which suggest chemisorption. These results appear to be too high and a possible explanation is given. It is concluded that the adhesive energy is due to physical adsorption and can be explained in terms of van der Waals forces only.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Qiang Zhao ◽  
Yang Li ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

The sputtering of graphite due to the bombardment of hydrogen isotopes is crucial to successfully using graphite in the fusion environment. In this work, we use molecular dynamics to simulate the sputtering using the large-scale atomic/molecular massively parallel simulator (lammps). The calculation results show that the peak values of the sputtering yield are between 25 eV and 50 eV. When the incident energy is greater than the energy corresponding to the peak value, a lower carbon sputtering yield is obtained. The temperature that is most likely to sputter is approximately 800 K for hydrogen, deuterium, and tritium. Below the 800 K, the sputtering yields increase with temperature. By contrast, above the 800 K, the yields decrease with increasing temperature. Under the same temperature and incident energy, the sputtering rate of tritium is greater than that of deuterium, which in turn is greater than that of hydrogen. When the incident energy is 25 eV, the sputtering yield at 300 K increases below an incident angle at 30 deg and remains steady after that.


Sign in / Sign up

Export Citation Format

Share Document