TIME-REVERSAL, LOOP-ANTILOOP SYMMETRY AND THE BESSEL EQUATION

2003 ◽  
Vol 17 (23) ◽  
pp. 1207-1218 ◽  
Author(s):  
ELEONORA ALFINITO ◽  
GIUSEPPE VITIELLO

The Bessel equation is shown to be equivalent, under suitable transformations, to a system of two damped/amplified parametric oscillator equations, which have been used in the study of inflationary models of the Universe, thermal field theories and Chern–Simons gauge theories. The breakdown of loop-antiloop symmetry due to group contraction manifests itself as breaking of time-reversal symmetry. The relation between some infinite dimensional loop-algebras, such as the Virasoro-like algebra, and the Euclidean algebras e(2) and e(3) is also analyzed.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Thomas T. Dumitrescu ◽  
Temple He ◽  
Prahar Mitra ◽  
Andrew Strominger

Abstract We establish the existence of an infinite-dimensional fermionic symmetry in four-dimensional supersymmetric gauge theories by analyzing semiclassical photino dynamics in abelian $$ \mathcal{N} $$ N = 1 theories with charged matter. The symmetry is parametrized by a spinor-valued function on an asymptotic S2 at null infinity. It is not manifest at the level of the Lagrangian, but acts non-trivially on physical states, and its Ward identity is the soft photino theorem. The infinite-dimensional fermionic symmetry resides in the same $$ \mathcal{N} $$ N = 1 supermultiplet as the physically non-trivial large gauge symmetries associated with the soft photon theorem.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tongshuai Zhu ◽  
Huaiqiang Wang ◽  
Haijun Zhang ◽  
Dingyu Xing

AbstractAxion was postulated as an elementary particle to solve the strong charge conjugation and parity puzzle, and later axion was also considered to be a possible component of dark matter in the universe. However, the existence of axions in nature has not been confirmed. Interestingly, axions arise out of pseudoscalar fields derived from the Chern–Simons theory in condensed matter physics. In antiferromagnetic insulators, the axion field can become dynamical due to spin-wave excitations and exhibits rich exotic phenomena, such as axion polariton. However, antiferromagnetic dynamical axion insulator has yet been experimentally identified in realistic materials. Very recently, MnBi2Te4 was discovered to be an antiferromagnetic topological insulator with a quantized static axion field protected by inversion symmetry $${\mathcal{P}}$$ P and magnetic-crystalline symmetry $${\mathcal{S}}$$ S . Here, we studied MnBi2Te4 films in which both the $${\mathcal{P}}$$ P and $${\mathcal{S}}$$ S symmetries are spontaneously broken and found that substantially enhanced dynamical magnetoelectric effects could be realized through tuning the thickness of MnBi2Te4 films, temperature, or element substitutions. Our results show that thin films of MnBi2Te4 and related compounds could provide a promising material platform to experimentally study axion electrodynamics.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Aleksander Stachowski ◽  
Marek Szydłowski ◽  
Krzysztof Urbanowski

We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the time reversal symmetry. We show that if we replace the cosmological time t appearing in the equation describing the evolution of the Universe by the Hubble cosmological scale time, then we obtain time dependent Λ(t) in the form of the series of even powers of the Hubble parameter H: Λ(t)=Λ(H). Our special attention is focused on radioactive-like exponential form of the decay process of the dark energy and on the consequences of this type decay.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
David Garofalo

While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.


1994 ◽  
Vol 08 (08n09) ◽  
pp. 561-570 ◽  
Author(s):  
S. S. MANDAL ◽  
S. RAMASWAMY ◽  
V. RAVISHANKAR

We present an analysis of the finite temperature Chern–Simons superconductivity model within the mean field framework. Using analytical and numerical means we compute the changes in the magnetic susceptibility, conductivity, the dielectric constant, and the specific heat as the temperature is increased. Over a narrow range of temperatures the properties of the system show a smooth transition to the normal state. Accompanying this is the near vanishing of the off-diagonal conductivity, signifying the effective restoration of parity and time reversal symmetries.


1996 ◽  
Vol 11 (15) ◽  
pp. 2643-2660 ◽  
Author(s):  
R.E. GAMBOA SARAVÍ ◽  
G.L. ROSSINI ◽  
F.A. SCHAPOSNIK

We study parity violation in (2+1)-dimensional gauge theories coupled to massive fermions. Using the ζ function regularization approach we evaluate the ground state fermion current in an arbitrary gauge field background, showing that it gets two different contributions which violate parity invariance and induce a Chern–Simons term in the gauge field effective action. One is related to the well-known classical parity breaking produced by a fermion mass term in three dimensions; the other, already present for massless fermions, is related to peculiarities of gauge-invariant regularization in odd-dimensional spaces.


2004 ◽  
Vol 16 (07) ◽  
pp. 823-849 ◽  
Author(s):  
T. SKRYPNYK

We construct a family of infinite-dimensional quasigraded Lie algebras, that could be viewed as deformation of the graded loop algebras and admit Kostant–Adler scheme. Using them we obtain new integrable hamiltonian systems admitting Lax-type representations with the spectral parameter.


Sign in / Sign up

Export Citation Format

Share Document