A NOVEL PT AND NPT MIXED IGBT HAVING A NEW n-BUFFER LAYER

2007 ◽  
Vol 21 (01) ◽  
pp. 1-8
Author(s):  
FEI ZHANG ◽  
SHUHUA LUO ◽  
LIANG ZHANG ◽  
WEI WANG ◽  
WEN YU ◽  
...  

For the first time, a novel mixed insulated gate bipolar transistor (MIGBT) is proposed and verified by two-dimensional (2D) mixed device-circuit simulations. The structure of the proposed device is almost identical with that of the conventional IGBT, except for the buffer layer which is formed by employing the n+/n- structure, so that the trade-off relation between the conduction and switching losses is greatly improved and efficiently decoupled. Furthermore, the proposed device exhibits larger forward blocking voltage and positive temperature coefficient of the forward voltage drop, facilitating parallel integration.

2010 ◽  
Vol 645-648 ◽  
pp. 1017-1020 ◽  
Author(s):  
Anant K. Agarwal ◽  
Qing Chun Jon Zhang ◽  
Robert Callanan ◽  
Craig Capell ◽  
Albert A. Burk ◽  
...  

In this paper, for the first time, we report a large area (1 cm2) SiC GTO with 9 kV blocking voltage fabricated on 100-mm 4H-SiC substrates with much reduced Basal Plane Dislocation (BPD) density. The static and dynamic characteristics are described. A forward drop of 3.7 V at 100 A (100 A/cm2) is measured at 25°C. A slight positive temperature coefficient of the forward drop is present at 300 A/cm2, indicating the possibility of paralleling multiple devices for higher current capability. The device exhibits extremely low leakage currents at high temperatures. The device has shown fast turn-on time of 53.9 nsec, and ~3.5 s of turn-off time, respectively. A stable forward voltage drop after electrical stress for >1000 hours has been achieved.


2012 ◽  
Vol 717-720 ◽  
pp. 981-984 ◽  
Author(s):  
Eugene A. Imhoff ◽  
Karl D. Hobart ◽  
Francis J. Kub ◽  
M.G. Ancona ◽  
Rachael L. Myers-Ward ◽  
...  

Integration of patterned ballast resistance into the anode of SiC PiNs is a solution to the dilemma of negative dVf /dT for such diodes. In fabricated 4H-SiC PiN diodes, we demonstrate a cross-over from negative to positive temperature coefficient for current densities as low as 80 A/cm2. Adjusting the percentage of the patterned anode area, the positive or neutral dVf /dT can be achieved over a wide current-density range without substantial penalty in the forward voltage drop. This characteristic is crucial for high-power SiC packages with ganged-parallel rectifier arrays.


2014 ◽  
Vol 543-547 ◽  
pp. 757-761
Author(s):  
Ling Ling Yang

A Full Hole-barrier Trench gate Insulated Gate Bipolar Transistor (FH-TIGBT) device structure is proposed for the first time. Compared with Carrier Stored Trench IGBT (CSTBT), which adds a carrier stored n layer between p base and n base in Trench IGBT (TIGBT), the new structure appends an n region located in the bottom of the trench gate. The result of Process and device simulations shows that the proposed device has lowered saturation voltage and larger capability of carrying current compared to either conventional trench IGBT or CSTBT. And the characteristics of turn-off time and breakdown voltage have negligibly changed. Further more, it has strongly positive temperature coefficient of on-state voltage, which means paralleling is very simple for the new device.


2016 ◽  
Vol 858 ◽  
pp. 954-957
Author(s):  
Sauvik Chowdhury ◽  
Collin W. Hitchcock ◽  
Rajendra Dahal ◽  
Ishwara B. Bhat ◽  
T. Paul Chow

We experimentally demonstrate 4H-SiC n-channel, DMOS Insulated Gate Bipolar Transistors (IGBTs) on 180 µm thick lightly doped free-standing n- substrates with an ion-implanted collector region, and metal-oxide-semiconductor (MOS) gate on (0001) and (000-1) surfaces. The IGBTs show an on-state current of 20A/cm2 at a power dissipation of 300W/cm2. Threshold voltage of 7.5V and 10.5V was obtained on Si-face and C-face respectively. Both IGBTs show a small positive temperature coefficient of the forward voltage drop, which is useful for easy parallelization of devices.


2010 ◽  
Vol 645-648 ◽  
pp. 1045-1048 ◽  
Author(s):  
Qing Chun Jon Zhang ◽  
Jim Richmond ◽  
Craig Capell ◽  
Anant K. Agarwal ◽  
John W. Palmour ◽  
...  

A novel power device configuration, the Bipolar Turn Off thyristor (BTO), was proposed and demonstrated in SiC. The BTO operates in anode switch configuration consisting of a 9 kV SiC p-type Gate Turn Off thyristor (GTO) and a 1600 V SiC n-type Bipolar Junction Transistor (BJT). Compared with SiC GTOs, several new features have been accomplished in the BTO: (1) A positive temperature coefficient of forward voltage drop, (2) Anode current saturation capability, and (3) A simple gate driver and fast switching speed.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4981
Author(s):  
Ekaterina Abramushkina ◽  
Assel Zhaksylyk ◽  
Thomas Geury ◽  
Mohamed El Baghdadi ◽  
Omar Hegazy

The development of electric vehicles (EVs) is an important step towards clean and green cities. An electric powertrain provides power to the vehicle and consists of a charger, a battery, an inverter, and a motor as the main components. Supplied by a battery pack, the automotive inverter manages the power of the motor. EVs require a highly efficient inverter, which satisfies low cost, size, and weight requirements. One approach to meeting these requirements is to use the new wide-bandgap (WBG) semiconductors, which are being widely investigated in the industry as an alternative to silicon switches. WBG devices have superior intrinsic properties, such as high thermal flux, of up to 120 W/cm2 (on average); junction temperature of 175–200 °C; blocking voltage limit of about 6.5 kV; switching frequency about 20-fold higher than that of Si; and up to 73% lower switching losses with a lower conduction voltage drop. This study presents a review of WBG-based inverter cooling systems to investigate trends in cooling techniques and changes associated with the use of WBG devices. The aim is to consider suitable cooling techniques for WBG inverters at different power levels.


2019 ◽  
Vol 963 ◽  
pp. 666-669
Author(s):  
Xiao Li Tian ◽  
Ben Tan ◽  
Yun Bai ◽  
Ji Long Hao ◽  
Cheng Yue Yang ◽  
...  

In this paper, the structural cell design optimization of 15kV 4H-SiC p-channel IGBT is performed. The effects of the parameters of JFET region on the blocking voltage and the forward characteristics are analyzed by numerical simulations. The results indicate that the JFET width and JFET region concentration have an important effect on the performance of IGBTs. Based on the simulation structure in this paper, the optimum JFET width is 10μm, and the optimum JFET concentration is 7×1015cm−3. Meanwhile, they should be carefully designed to achieve the best trade-off between the blocking voltage and the forward voltage drop.


2020 ◽  
Vol 1004 ◽  
pp. 911-916 ◽  
Author(s):  
Daniel Johannesson ◽  
Keijo Jacobs ◽  
Staffan Norrga ◽  
Anders Hallén ◽  
Muhammad Nawaz ◽  
...  

In this paper, a technology computer-aided design (TCAD) model of a silicon carbide (SiC) insulated-gate bipolar transistor (IGBT) has been calibrated against previously reported experimental data. The calibrated TCAD model has been used to predict the static performance of theoretical SiC IGBTs with ultra-high blocking voltage capabilities in the range of 20-50 kV. The simulation results of transfer characteristics, IC-VGE, forward characteristics, IC-VCE, and blocking voltage characteristics are studied. The threshold voltage is approximately 5 V, and the forward voltage drop is ranging from VF = 4.2-10.0 V at IC = 20 A, using a charge carrier lifetime of τA = 20 μs. Furthermore, the forward voltage drop impact for different process dependent parameters (i.e., carrier lifetimes, mobility/scattering and trap related defects) and junction temperature are investigated in a parametric sensitivity analysis. The wide-range simulation results may be used as an input to facilitate high power converter design and evaluation. In this case, the TCAD simulated static characteristics of SiC IGBTs is compared to silicon (Si) IGBTs in a modular multilevel converter in a general high-power application. The results indicate several benefits and lower conduction energy losses using ultra-high voltage SiC IGBTs compared to Si IGBTs.


2014 ◽  
Vol 778-780 ◽  
pp. 1038-1041 ◽  
Author(s):  
Tadayoshi Deguchi ◽  
Shuji Katakami ◽  
Hiroyuki Fujisawa ◽  
Kensuke Takenaka ◽  
Hitoshi Ishimori ◽  
...  

High-voltage SiC p-channel insulated-gate bipolar transistors (p-IGBT) utilizing current-spreading layer (CSL) formed by ion implantation are fabricated and their properties characterized. A high blocking voltage of 15 kV is achieved at room temperature by optimizing the JFET length. An ampere-class p-IGBT exhibited a low forward voltage drop of 8.5 V at 100 A/cm2 and a low differential specific on-resistance of 33 mΩ cm2 at 250 °C, while these values were high at room temperature. For further reduction of the forward voltage drop in the on-state and temperature stability, the temperature dependence of the JFET effect and carrier lifetime in p-IGBTs are investigated. Optimization of the JFET length using an epitaxial CSL, instead of applying ion implantation and lifetime enhancement, could lead to a further reduction of the forward voltage drop.


2008 ◽  
Vol 600-603 ◽  
pp. 1183-1186 ◽  
Author(s):  
Mrinal K. Das ◽  
Q. Jon Zhang ◽  
Robert Callanan ◽  
Craig Capell ◽  
Jack Clayton ◽  
...  

For the first time, high power 4H-SiC n-IGBTs have been demonstrated with 13 kV blocking and a low Rdiff,on of 22 mWcm2 which surpasses the 4H-SiC material limit for unipolar devices. Normally-off operation and >10 kV blocking is maintained up to 200oC base plate temperature. The on-state resistance has a slight positive temperature coefficient which makes the n-IGBT attractive for parallel configurations. MOS characterization reveals a low net positive fixed charge density in the oxide and a low interface trap density near the conduction band which produces a 3 V threshold and a peak channel mobility of 18 cm2/Vs in the lateral MOSFET test structure. Finally, encouraging device yields of 64% in the on-state and 27% in the blocking indicate that the 4H-SiC n-IGBT may eventually become a viable power device technology.


Sign in / Sign up

Export Citation Format

Share Document