PERMUTATION ENTROPY APPLIED TO MOVEMENT BEHAVIORS OF DROSOPHILA MELANOGASTER

2011 ◽  
Vol 25 (12n13) ◽  
pp. 1133-1142 ◽  
Author(s):  
YUEDAN LIU ◽  
TAE-SOO CHON ◽  
HUNKI BAEK ◽  
YOUNGHAE DO ◽  
JIN HEE CHOI ◽  
...  

Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


2021 ◽  
Author(s):  
Dieniffer Espinosa Janner ◽  
Nathalie Savedra Gomes ◽  
Márcia Rósula Poetini ◽  
Kétnne Hanna Poleto ◽  
Elize Aparecida Santos Musachio ◽  
...  

Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1809-1824 ◽  
Author(s):  
Balaji Iyengar ◽  
John Roote ◽  
Ana Regina Campos

AbstractFrom a screen of pupal lethal lines of Drosophila melanogaster we identified a mutant strain that displayed a reproducible reduction in the larval response to light. Moreover, this mutant strain showed defects in the development of the adult visual system and failure to undergo behavioral changes characteristic of the wandering stage. The foraging third instar larvae remained in the food substrate for a prolonged period and died at or just before pupariation. Using a new assay for individual larval photobehavior we determined that the lack of response to light in these mutants was due to a primary deficit in locomotion. The mutation responsible for these phenotypes was mapped to the lethal complementation group l(2)34Dc, which we renamed tamas (translated from Sanskrit as “dark inertia”). Sequencing of mutant alleles demonstrated that tamas codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-γ125).


Author(s):  
Dries Verstraete ◽  
Kjersti Lunnan

Small unmanned aircraft are currently limited to flight ceilings below 20,000 ft due to the lack of an appropriate propulsion system. One of the most critical technological hurdles for an increased flight ceiling of small platforms is the impact of reduced Reynolds number conditions at altitude on the performance of small radial turbomachinery. The current article investigates the influence of Reynolds number on the efficiency and pressure ratio of two small centrifugal compressor impellers using a one-dimensional meanline performance analysis code. The results show that the efficiency and pressure ratio of the 60 mm baseline compressor at the design rotational speed drops with 6–9% from sea-level to 70,000 ft. The impact on the smaller 20 mm compressor is slightly more pronounced and amounts to 6–10%. Off-design changes at low rotational speeds are significantly higher and can amount to up to 15%. Whereas existing correlations show a good match for the efficiency drop at the design rotational speed, they fail to predict efficiency changes with rotational speed. A modified version is therefore proposed.


Author(s):  
Chaoqin Zhai ◽  
David H. Archer ◽  
John C. Fischer

This paper presents the development of an equation based model to simulate the combined heat and mass transfer in the desiccant wheels. The performance model is one dimensional in the axial direction. It applies a lumped formulation in the thickness direction of the desiccant and the substrate. The boundary conditions of this problem represent the inlet outside/process and building exhaust/regeneration air conditions as well as the adiabatic condition of the two ends of the desiccant composite. The solutions of this model are iterated until the wheel reaches periodic steady state operation. The modeling results are obtained as the changes of the outside/process and building exhaust/regeneration air conditions along the wheel depth and the wheel rotation. This performance model relates the wheel’s design parameters, such as the wheel dimension, the channel size and the desiccant properties, and the wheel’s operating variables, such as the rotary speed and the regeneration air flowrate, to its operating performance. The impact of some practical issues, such as wheel purge, residual water in the desiccant and the wheel supporting structure, on the wheel performance has also been investigated.


Author(s):  
Michael Halim

The Coronavirus pandemic has caused negative effects across the globe; mortality and morbidity being the main impact. After WHO, termed the disease a pandemic in March 2020, they gave in health guidelines to follow to control the spread of the disease. The health industry, academia, and different governments are united to develop and test various vaccines at an unprecedented speed to combat the pandemic fully and bring the world back to its feet. Some of the vaccines developed include Pfizer, Moderna, and AstraZeneca. However, just like other viruses, the SAR-CoV-2 virus keeps changing through mutation, as various variants, different from the first one are emerging. Evidence shows that the three new variants; UK, Brazil, and South Africa are more severe in terms of transmissibility, disease severity, evading of the immune response, and reducing the ability to neutralized antibodies, compared to the original coronavirus. With such knowledge of the existence of different strains, the arises concerns on whether the already available vaccines are effective enough in preventing the new COVID-19 strains. Studies are still underdeveloped to learn more on the virologic, epidemiologic, and clinical characteristics of the ever-emerging variants. This research, through a systemic review of literature, seeks to find out whether the variants of SAR-CoV-2 have an impact on the efficacy of various vaccines developed in fighting the disease and the entire body’s immune response.


2001 ◽  
Author(s):  
Randall S. Gemmen

Abstract The effect of inverter ripple current on fuel cell stack performance and stack lifetime remains uncertain. This paper provides a first attempt to examine the impact of inverter load dynamics on the fuel cell. Since reactant utilization is known to impact the mechanical state of a fuel cell, it is suggested that the varying reactant conditions surrounding the cell govern, at least in part, the lifetime of the cells. This paper investigates these conditions through the use of a dynamic model for the bulk conditions within the stack, as well as a one-dimensional model for the detailed mass transport occurring within the electrode of a cell. These two independent modeling approaches help to verify their respective numerical procedures. In this work, the inverter load is imposed as a boundary condition to the models. Results show the transient behavior of the reactant concentrations within the stack, and of the mass diffusion within the electrode under inverter loads with frequencies between 30 Hz and 1250 Hz.


2018 ◽  
Vol 63 (2) ◽  
pp. e01896-18 ◽  
Author(s):  
Sebastian Wurster ◽  
Russell E. Lewis ◽  
Nathaniel D. Albert ◽  
Dimitrios P. Kontoyiannis

ABSTRACT Breakthrough mucormycosis in patients receiving isavuconazole prophylaxis or therapy has been reported. We compared the impact of isavuconazole and voriconazole exposure on the virulence of clinical isolates of Aspergillus fumigatus and different Mucorales species in a Drosophila melanogaster infection model. In contrast to A. fumigatus, a hypervirulent phenotype was found in all tested Mucorales upon preexposure to either voriconazole or isavuconazole. These findings may contribute to the explanation of breakthrough mucormycosis in isavuconazole-treated patients.


2021 ◽  
Author(s):  
Miguel Landum ◽  
Marta Salvado Silva ◽  
Nelson Martins ◽  
Luís Teixeira

AbstractThe microbial community interacting with a host can modulate the outcome of pathogenic infections. For instance, Wolbachia, one of the most prevalent invertebrate endosymbionts, strongly increases resistance of Drosophila melanogaster and other insect hosts, to many RNA viruses. D. melanogaster is also in continuous association with gut bacteria, whose role in antiviral immunity is poorly characterized. Here we asked how gut-colonizing bacteria impact viral titres and host survival, and how these interact with route of infection or Wolbachia presence. We compared germ-free flies and flies associated with two gut bacteria species recently isolated from wild flies (Acetobacter thailandicus and Lactobacillus brevis). We found that Wolbachia-conferred protection to both DCV or FHV is not affected by the presence or absence of these gut bacteria. Flies carrying A. thailandicus have lower DCV loads than germ-free flies, upon systemic infection, but reduced survival, indicating that these bacteria increase resistance to virus and decrease disease tolerance. Association with L. brevis, alone or in combination with A. thailandicus, did not lead to changes in survival to systemic infection. In contrast to the effect on systemic infection, we did not observe an impact of these bacteria on survival or viral loads after oral infection. Overall, the impact of gut-associated bacteria in resistance and tolerance to viruses was mild, when compared with Wolbachia. These results indicate that the effect of gut-associated bacteria to different viral infections, and different routes of infection, is complex and understanding it requires a detailed characterization of several parameters of infection.


2018 ◽  
Vol 24 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Mathieu Gunepin ◽  
Florence Derache ◽  
Marion Trousselard ◽  
Bruno Salsou ◽  
Jean-Jacques Risso

Introduction: Periodontal diseases are caused by pathogenic microorganisms that induce increases in of local and systemic proinflammatory cytokines, resulting in periodontal damage. The onset and evolution of periodontal diseases are influenced by many local and systemic risk factors. Educational objective: In this article, we aim to review the results of the research on the impact of chronic stress on the occurrence, development, and response to periodontal disease treatments and on the pathophysiological mechanisms of periodontal disease. Conclusion: Chronic stress has a negative impact on the occurrence, development, and response to the treatment of periodontal disease via indirect actions on the periodontium. This can result from behavioral changes caused by stress (poor dental hygiene, smoking, etc.) and a direct neuroimmunoendocrinological action related to the consequences (particularly immunological) of the secretion of certain chemicals (e.g., cortisol) induced by the activation of the hypothalamus and the autonomic nervous system in response to stress. These factors necessitate multidisciplinary management (e.g., physician, oral surgeon, and psychologist) of patients to identify subjects with chronic stress and to employ countermeasures to decrease the impact of stress on the periodontium.


Sign in / Sign up

Export Citation Format

Share Document