STUDY OF THERMODYNAMICAL PROPERTIES OF POLYVINYL ACETATE IN TETRAHYDROFURAN

2012 ◽  
Vol 26 (27) ◽  
pp. 1250180 ◽  
Author(s):  
PRIYANKA V. TABHANE ◽  
OMPRAKASH P. CHIMANKAR ◽  
VILAS A. TABHANE

The propagation of ultrasonic waves and the measurement of their velocity in solutions form an important tool for the evaluation of various acoustical and thermodynamical parameters which give an insight into the nature of miscibility and molecular interactions in polymer solutions. In the present study, the ultrasonic velocity, density, viscosity measurements have been made in 0.1 M solution using pulse echo overlap technique at 293 K at the different concentrations of polyvinyl acetate in tetrahydrofuran. Thermo-acoustical parameters viz., adiabatic compressibility, molar sound velocity, molar compressibility, expansion coefficient, acoustic impedance, van der Waals' constant and internal pressure have been computed from the experimental data. The nature of polymer/solvent interaction and the effect of concentration on the molecular interaction are studied. The nonlinear variations of polyvinyl acetate in tetrahydrofuran have been studied. The variation of ultrasonic velocity and other thermo-acoustical parameters shows nonlinear increase or decrease with molar concentration which suggest semi-compatibility of the polymer in the given solvent.

2013 ◽  
Vol 33 (9) ◽  
pp. 851-856 ◽  
Author(s):  
Baljinder Kaur ◽  
Kailash C. Juglan

Abstract Density, viscosity and ultrasonic velocity of polyvinyl acetate with acetic acid have been measured at a temperature of 299K for different concentrations. Density and viscosity have been measured for a binary liquid mixture with a specific gravity bottle and a viscometer. Ultrasonic velocity has been measured using a single crystal interferometer at a frequency of 2 MHz. Ultrasonic velocities for the binary mixture at 1 MHz and 2 MHz was compared by taking some values from the literature. The sound velocity (V), density (ρ) and viscosity (η) were used to calculate the parameters such as adiabatic compressibility (β), acoustic impedance (Z), intermolecular free length (Lf), ultrasonic attenuation (α/f2) and relaxation time (τ). The variations of experimentally obtained parameters indicate the presence of molecular interaction between the molecules of the mixture. The ultrasonic velocity increased with an increase in concentration. Solute-solvent interaction is further confirmed by viscosity values, which increased with increasing concentration suggesting more association between solute and solvent molecules. The linear variations in Rao’s constant and Wada’s constant suggest the absence of complex formation.


Author(s):  
A.B. Naik

Density, ultrasonic velocity of pure solvent, dimethylformamide (DMF) and ligand solutions of substituted thiazoles in DMF-water mixture were measured at different temperatures (303.15, 308.15, 313.15 and 318.15) K. Acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustical impedance and relative association were determined from experimental data of density and ultrasonic velocity. The effect of temperature variations on the strength of molecular interaction has also been studied. An excellent correlation represents in terms of solute-solvent and solvent-solvent interaction at all temperatures.


2011 ◽  
Vol 8 (1) ◽  
pp. 77-84 ◽  
Author(s):  
S. Ravichandran ◽  
C. Rathika Thaya Kumari

The interaction of sodium dodecyl sulphate (SDS) / poly(vinyl alcohol) (PVA) solution was studied by ultrasonic velocity measurements. Ultrasonic velocity, density, viscosity in mixtures of sodium dodecyl sulphate in polyvinyl alcohol was measured over the entire range of composition. From the experimental data, other related thermodynamic parameters,viz., adiabatic compressibility, intermolecular free length, surface tension, relative association, relaxation time, absorption coefficient and internal pressure were calculated. Formations of rods interfere with velocity of ultrasonic waves. Hence the ultrasonic velocity decreases with concentration. These results were interpreted in terms of polymer-surfactant complex reactions.


2015 ◽  
Vol 1086 ◽  
pp. 111-119
Author(s):  
Selvi C. Senthamil ◽  
S. Ravichandran ◽  
C.P. Malliga ◽  
C. Thenmozhi ◽  
V. Kannappan

Ultrasonic velocity and density of salicilaldehyde with iodine in hexane has been measured at 293.15K, 298.15K, 303.15K and 308.15K in different concentration. Ultrasonic velocity has been measured using single frequency interferometer at 2MHz (Model F-81). By using the Ultrasonic velocity (u), density (ρ) and coefficient of viscosity (η) and the other acoustical parameters adiabatic compressibility (κ), free length (Lf), interaction parameter (α), Free volume (Vf) were calculated. The addition of hexane with a mixture leads to a compact structure due to presence of dipolar type interaction. This contributes to the decrease in free volume values and the internal pressure shows an increasing trend. The results have been discussed in terms of solute-solute and solute-solvent interactions between the component and the compatibility of these methods in predicting the interactions in these mixtures has also been discussed.Key Words salicilaldehyde, iodine, hexane, Ultrasonic velocity, molecular interactions.


2016 ◽  
Vol 4 (2) ◽  
pp. 15 ◽  
Author(s):  
M Vigneswari ◽  
S. S Saravanakumar ◽  
V. N Suresh ◽  
S Sankarrajan

Ultrasonic velocity, density, viscosity have been measured experimentally in the binary and ternary mixtures of Poly Vinyl Alcohol (PVA), water and borax with various concentration at 301.32 K. As the acoustical parameters like adiabatic compressibility, intermolecular free length, relaxation time, acoustic impedance, surface tension, Rao’s and Wada’s constant, ultrasonic attenuation and free volume would be more useful to predict and confirm the molecular interaction, these have been determined by using ultrasonic velocity, density and viscosity of the prepared solution. It has been identified that the molecular interactions in binary mixture were stronger than that of in ternary mixtures. And also there is a strong solute – solvent interaction occurring in both binary and ternary solutions. This may be due to the greater possibility of hydrogen bonding between PVA and Water molecules. When the borax is added, the molecular interaction is getting weaker due to greater affinity of borate ion towards the hydrogen in hydroxyl group of PVA.


2009 ◽  
Vol 6 (1) ◽  
pp. 138-140 ◽  
Author(s):  
R. Nithya ◽  
S. Nithiyanantham ◽  
S. Mullainathan ◽  
M. Rajasekaran

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of toluene with benzene ando-xylone with benzene. The acoustical parameters such as adiabatic compressibility, free length, free volume and acoustical impedance are calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures


2011 ◽  
Vol 8 (3) ◽  
pp. 1094-1101 ◽  
Author(s):  
Shaik Babu ◽  
A. Radhakrishna Murthy

The ultrasonic velocity (U), density (ρ) and viscosity (η) measurements have been carried out for the binary mixtures of acetyl acetone with benzene, carbon tetra chloride and isoamyl alcohol at 301 K. From the measured values of ultrasonic velocity, density and viscosity, parameters such as internal pressure (πi), free volume (Vƒ) and acoustical parameters such as adiabatic compressibility (β), inter molecular free length (Lƒ), acoustic impedance (Z), relaxation time (τ) have been calculated. The results have been analyzed and interpreted in terms of molecular interactions.


2019 ◽  
Vol 1 (3) ◽  
pp. 8-15
Author(s):  
Edward Jeyakumar J ◽  
Chidambara Vinayagam S ◽  
Senthil Murugan J ◽  
Syed Ibrahim P.S

The experimental values of ultrasonic velocity, density and viscosity have been measured for the ternary liquid mixtures containing 2-Nitroanisole and 1-Pentanol in n-Hexane at 303,308 and 313K. To calculate various acoustical parameters like adiabatic compressibility, free volume, internal pressure, acoustical impedance, adsorption co-efficient and molecular interaction parameters have been computed using the experimental data. The linearity of variation in ultrasonic velocity and other parameters are due to the molecular interaction between donor acceptor molecules in liquid-liquid mixture. The various molecular interactions like dipole-dipole, dipole-induced dipole, induced-induced dipole have been discussed for the liquid mixture containing 2-Nitroanisone, 1-Pentanol in n-Hexane at different temperatures and concentration.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Richa Saxena ◽  
S. C. Bhatt

Ultrasonic velocities, densities, and viscosities have been measured for the solution of polyvinyl alcohol in water at concentration range of 0.3% to 1% at temperature 35°C. Ultrasonic velocities have been measured using variable path ultrasonic interferometer at 1 MHz frequency. The acoustical parameters like adiabatic compressibility, acoustic impedance, intermolecular free length, and relaxation time have been calculated by using above-mentioned values of ultrasonic velocities, densities, and viscosities. The variation of these acoustical parameters is explained in terms of solute-solvent interaction in a polymer solution.


Author(s):  
N. Santhi ◽  
P.L. Sabarathinam ◽  
G. Alamelumangai ◽  
J. Madhumitha ◽  
M. Emayavaramban

Ultrasonic velocity, viscosity and density of alcohol[s] in n-hexane have been measured at various temperatures in the range of 303.15 - 318.15K. From the experimental data, the acoustical parameters such as molar volume, adiabatic compressibility, intermolecular free length and their excess values have been computed and presented as functions of compositions. The deviations from ideality of the acoustical parameters are explained on the basis of molecular interactions between the components of the mixtures. The variations of these parameters with composition of the mixture suggest the strength of interactions in these mixtures.


Sign in / Sign up

Export Citation Format

Share Document