Effects of combustor geometry on the combustion process of an RBCC combustor in high-speed ejector mode

2019 ◽  
Vol 33 (27) ◽  
pp. 1950330
Author(s):  
Taiyu Wang ◽  
Zhenguo Wang ◽  
Zun Cai ◽  
Jian Chen ◽  
Mingbo Sun ◽  
...  

The combustion characteristics of high-speed ejector mode in a 2-dimensional strut-based RBCC (rocket-based combined cycle) combustor had been investigated numerically in a Mach 2.5 supersonic flow. The numerical approach had been validated by comparing numerical results with available experimental data. Besides, three different hydrogen-air chemical reaction mechanisms had also been compared. The effect of the combustor geometry on the combustion process was then discussed by analyzing the heat release distribution and flow field. It was found that the wall configuration, closeout angle of the converging location and converging ratio all have significant influences on the heat release distribution and flow field structures. It is demonstrated that a converging–diverging wall configuration is beneficial for the combustion process with significant heat release increase compared to the other wall configurations. In addition, the closeout angle of the converging location is also closely related to the combustion performance, and there exists an optimized closeout angle in a specific combustor geometry. It is also revealed that the major heat release region moves upstream obviously with increase in the converging ratio, leading to an enhanced combustion process. However, the converging ratio is still to be optimized to keep a balance between heat release increase and total pressure loss of the supersonic flow.

Author(s):  
Jan Siemann ◽  
Ingolf Krenz ◽  
Joerg R. Seume

Reducing the fuel consumption is a main objective in the development of modern aircraft engines. Focusing on aircraft for mid-range flight distances, a significant potential to increase the engines overall efficiency at off-design conditions exists in reducing secondary flow losses of the compressor. For this purpose, Active Flow Control (AFC) by aspiration or injection of fluid at near wall regions is a promising approach. To experimentally investigate the aerodynamic benefits of AFC by aspiration, a 4½-stage high-speed axial-compressor at the Leibniz Universitaet Hannover was equipped with one AFC stator row. The numerical design of the AFC-stator showed significant hub corner separations in the first and second stator for the reference configuration at the 80% part-load speed-line near stall. Through the application of aspiration at the first stator, the numerical simulations predict the complete suppression of the corner separation not only in the first, but also in the second stator. This leads to a relative increase in overall isentropic efficiency of 1.47% and in overall total pressure ratio of 4.16% compared to the reference configuration. To put aspiration into practice, the high-speed axial-compressor was then equipped with a secondary air system and the AFC stator row in the first stage. All experiments with AFC were performed for a relative aspiration mass flow of less than 0.5% of the main flow. Besides the part-load speed-lines of 55% and 80%, the flow field downstream of each blade row was measured at the AFC design point. Experimental results are in good agreement with the numerical predictions. The use of AFC leads to an increase in operating range at the 55% part-load speed-line of at least 19%, whereas at the 80% part-load speed-line no extension of operating range occurs. Both speed-lines, however, do show a gain in total pressure ratio and isentropic efficiency for the AFC configuration compared to the reference configuration. Compared to the AFC design point, the isentropic efficiency ηis rises by 1.45%, whereas the total pressure ratio Πtot increases by 1.47%. The analysis of local flow field data shows that the hub corner separation in the first stator is reduced by aspiration, whereas in the second stator the hub corner separation slightly increases. The application of AFC in the first stage further changes the stage loading in all downstream stages. While the first and third stage become unloaded by application of AFC, the loading in terms of the De-Haller number increases in the second and especially in the fourth stage. Furthermore, in the reference as well as in the AFC configuration, the fourth stator performs significantly better than predicted by numerical results.


1997 ◽  
Vol 119 (4) ◽  
pp. 723-732 ◽  
Author(s):  
W. G. Joo ◽  
T. P. Hynes

This paper describes the development of actuator disk models to simulate the asymmetric flow through high-speed low hub-to-tip ratio blade rows. The actuator disks represent boundaries between regions of the flow in which the flow field is solved by numerical computation. The appropriate boundary conditions and their numerical implementation are described, and particular attention is paid to the problem of simulating the effect of blade row blockage near choking conditions. Guidelines on choice of axial position of the disk are reported. In addition, semi-actuator disk models are briefly described and the limitations in the application of the model to supersonic flow are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hong-hua Cai ◽  
Wan-sheng Nie ◽  
Xin-lei Yang ◽  
Rui Wu ◽  
Ling-yu Su

Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.


Author(s):  
A. Marosky ◽  
V. Seidel ◽  
S. Bless ◽  
T. Sattelmayer ◽  
F. Magni

In most dry, low NOx combustor designs, the front panel impingement cooling air is directly injected into the combustor primary zone. As this air partially mixes with the swirling flow of premixed reactants from the burner prior to completion of heat release, it reduces the effective equivalence ratio in the flame and has a beneficial effect on NOx emissions. However, the fluctuations of the equivalence ratio in the flame potentially increase heat release fluctuations and influence flame stability. Since both effects are not yet fully understood, isothermal experiments are made in a water channel, where high speed planar laser-induced fluorescence (HSPLIF) is applied to study the cooling air distribution and its fluctuations in the primary zone. In addition, the flow field is measured with high speed particle image velocimetry (HSPIV). Both mixing and flow field are also analyzed in numerical studies using isothermal large eddy simulation (LES), and the simulation results are compared with the experimental data. Of particular interest is the influence of the injection configuration and cooling air momentum variation on the cooling air penetration and dispersion. The spatial and temporal quality of mixing is quantified with probability density functions (PDF). Based on the results regarding the equivalence ratio fluctuations, regions with potential negative effects on combustion stability are identified. The strongest fluctuations are observed in the outer shear layer of the swirling flow, which exerts a strong suction effect on the cooling air. Interestingly, the cooling air dilutes the recirculation zone of the swirling flow. In the reacting case, this effect is expected to lead to a decrease of the temperature in the flame-anchoring zone below the adiabatic flame temperature of the premixed reactant, which may have an adverse effect on flame stability.


2014 ◽  
Vol 16 (2-3) ◽  
pp. 245
Author(s):  
U. Zhapbasbayev ◽  
V. Zabaykin ◽  
Y. Makashev ◽  
A. Tursynbay ◽  
B. Urmashev

<p>Results are presented of computational and experimental investigations of the influence of temperature and flow composition on the hydrogen combustion kinetics for a coaxial fuel supersonic flow. Depending on the flow parameters, combustion is shown to occur with an intense heat release governed by the speed of chemical reactions, or a diffusion combustion with heat release governed by mixing. The computational results are in good agreements of with laboratory data and portrays many important features of supersonic combustion. The influence of the gas temperature and composition on the diffusion combustion of a circular hydrogen jet in supersonic coaxial flow at the over expanded exhaust regimes is investigated. It is found that at low flow temperatures (Т<sub>2 </sub>~ 900 K) and in the absence of water vapors in the oxidizer gas composition, the speed of chemical reactions is the determining factor for combustion. An increase in the flow temperature (Т<sub>2</sub> &gt; 1200 K) causes a reduction of the induction time of the reactive mixture, because the mixing of fuel with oxidizer decreases, and a “sluggish” diffusion combustion of non-mixed gases is observed. The presence of water vapor and active radicals in the gas ensures the self-ignition from the start of the mixing, and the diffusion combustion mode is limited by mixing of the hydrogen jet with the coaxial flow (similar to the case with high initial temperatures of the air stream). In the case of the delay combustion process the maximum pressure level on the wall is 10% more than that in the combustion mode with ignition at the start of mixing. A sluggish combustion regime may lead to an incomplete hydrogen burnout.</p>


2019 ◽  
Vol 213 ◽  
pp. 02033
Author(s):  
Tomáš Jelínek ◽  
Erik Flídr ◽  
Martin Němec ◽  
Jan Šimák

A new test facility was built up as a part of a closed-loop transonic wind tunnel in VZLU´s High-speed Aerodynamics Department. The wind tunnel is driven by a twelve stage radial compressor and Mach and Reynolds numbers can be changed by the compressor speed and by the total pressure in the wind tunnel loop by a set of vacuum pumps, respectively. The facility consists of an axisymmetric subsonic nozzle with an exit diameter de = 100 mm. The subsonic nozzle is designed for regimes up to M = 1 at the nozzle outlet. At the nozzle inlet there is a set of a honeycomb and screens to ensure the flow stream laminar at the outlet of the nozzle. The subsonic nozzle can be supplemented with a transonic slotted nozzle or a supersonic rigid nozzle for transonic and supersonic outlet Mach numbers. The probe is fixed in a probe manipulator situated downstream of the nozzle and it ensures a set of two perpendicular angles in a wide range (±90°). The outlet flow field was measured through in several axial distances downstream the subsonic nozzle outlet. The total pressure and static pressure was measured in the centreline and the total pressure distribution in the vertical and horizontal plane was measured as well. Total pressure fluctuations in the nozzle centreline were detected by a FRAP probe. From the initial flow measurement in a wide range of Mach numbers the best location for probe calibration was chosen. The flow field was found to be suitable for probe calibration.


Author(s):  
Kenji Sato ◽  
Ed Knudsen ◽  
Heinz Pitsch

Stable combustion is one of the most important requirements for the development of heavy duty gas turbine engines that comply with stringent environmental regulations at high firing temperatures. In this research, one of the typical combustion instabilities which is caused by an acoustically forced velocity disturbance is investigated using variable density LES simulations. The G-equation approach for LES is used as the combustion model [1], and an experiment by Balachandran et al. [2, 3] is selected for case study. The velocity profiles in the experimental combustion chamber are compared with experimentally measured data at non-reacting conditions and it is confirmed that these are in good agreement. At the reacting conditions, predicted flame shapes are compared with OH PLIF measurements. The transfer function of the heat release due to inlet velocity forcing at 40 Hz and 160 Hz frequencies is also compared with the experimental data. These are in good agreement, including the nonlinear response of heat release. The transfer function is highly related to the flow field. The non-linearity of the transfer function can be traced to the interaction of the flow field in the combustion chamber with the combustion process itself.


Author(s):  
Fangyuan Lou ◽  
Douglas R. Matthews ◽  
Nicholas J. Kormanik ◽  
Nicole L. Key

Abstract In the previous part of the paper, a novel method to reconstruct the compressor non-uniform circumferential flow field using spatially under-sampled data points is developed. In this part of the paper, the method is applied to two compressor research articles to further demonstrate the potential of the novel method in resolving the important flow features associated with these circumferential non-uniformities. In the first experiment, the static pressure field at the leading edge of a vaned diffuser in a high-speed centrifugal compressor is reconstructed using pressure readings from nine static pressure taps placed on the hub of the diffuser. The magnitude and phase information for the first three dominant wavelets are characterized. Additionally, the method shows significant advantages over the traditional averaging methods for calculating repeatable mean values of the static pressure. While using the multi-wavelet approximation method, the errors in the mean static pressure with one dropout measurement are 70% less than the pitchwise-averaging method. In the second experiment, the full-annulus total pressure field downstream of Stator 2 in a three-stage axial compressor is reconstructed from a small segment of data representing 20% coverage of the annulus. Results show very good agreement between the reconstructed total pressure profile and the experiment at a variety of spanwise locations from near hub to near shroud. The features associated with blade-row interactions accounting for passage-to-passage variations are resolved in the reconstructed total pressure profile.


2014 ◽  
Vol 599-601 ◽  
pp. 377-380
Author(s):  
Qiao Li ◽  
Ya Yu Huang

The numerical simulation calculation of air-assisted atomizer internal gas flow field is done, the distribution and changes of the nozzle inside flow field total pressure, velocity, and dynamic and static pressure are analyzed. The analysis shows that the total pressure loss is less; due to the effect of gas viscous, the high-speed air flow is formed vortex flow near the outlet nozzle and the mutual influence between the dynamic and static pressure. A new way is supported for optimizing the nozzle structure according to these studies.


Sign in / Sign up

Export Citation Format

Share Document