Heat Release Tests and High-Speed Photography using a High Swirl Bomb Simulating the Combustion Process in the D.I. Diesel Engine

1986 ◽  
Author(s):  
C. L. White ◽  
F. J. Wallace
Author(s):  
N Ladommatos ◽  
M Parsi ◽  
N McGrath ◽  
S Mayne

Modifications have been made to the injection system of the engine used for cetane-rating diesel fuels. These involved the replacement of the standard pintle nozzle with a single-hole orifice-type nozzle. The aim of the modifications was to improve the combustion process and thereby increase the precision of the cetane-rating test. The modifications to the injection system have been assessed using heat release analysis, exhaust emission measurements and high-speed photography of the combustion flames.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Author(s):  
Seung Hyup Ryu ◽  
Ki Doo Kim ◽  
Wook Hyeon Yoon ◽  
Ji Soo Ha

Accurate heat release analysis based on the cylinder pressure trace is important for evaluating combustion process of diesel engines. However, traditional single-zone heat release models (SZM) have significant limitations due mainly to their simplified assumptions of uniform charge and homogeneity while neglecting local temperature distribution inside cylinder during combustion process. In this study, a heat release analysis based on single-zone model has been evaluated by comparison with computational analysis result using Fire-code, which is based on multi-dimensional model (MDM). The limitations of the single-zone assumption have been estimated. To overcome these limitations, an improved model that includes the effects of spatial non-uniformity has been applied. From this improved single-zone heat release model (Improved-SZM), two effective values of specific heats ratios, denoted by γV and γH in this study, have been introduced. These values are formulated as the function of charge temperature changing rate and overall equivalence ratio by matching the results of the single-zone analysis to those of computational analysis using Fire-code about medium speed marine diesel engine. Also, it is applied that each equation of γV and γH has respectively different slopes according to several meaningful regions such as the start of injection, the end of injection, the maximum cylinder temperature, and the exhaust valve open. This calculation method based on improved single-zone model gives a good agreement with Fire-code results over the whole range of operating conditions.


Author(s):  
Fridolin Unfug ◽  
Uwe Wagner ◽  
Kai W. Beck ◽  
Juergen Pfeil ◽  
Ulf Waldenmaier ◽  
...  

To fulfil strict emission regulations and the need for higher efficiency of future Diesel engines require an optimized combustion process. Optical investigations represent a powerful tool for getting a better understanding of the ongoing processes. For medium speed Diesel engines, optical investigations are relatively rare or not available. The “Institut für Kolbenmaschinen” (IFKM) and MAN Diesel & Turbo SE performed extensive optical in-situ investigations of the injection and combustion process of a MAN 32/44 CR single cylinder medium speed Diesel engine that provide previously unavailable insights into the ongoing processes. The optical investigations aimed on fuel spray visualization, high-speed soot luminescence measurement and two colour pyrometry applied for five combustion chamber regions. To apply the optical measurement techniques, two optical accesses were designed. Access no. 1 is placed near the cylinder liner. Access no. 2 is located close to the injector in a 46° angle to the cylinder vertical axis. An insert was used which consists of an illumination port and a visualization endoscope. Additionally some special nozzle designs were used beside the standard nozzle, which have one separated nozzle hole. This enables a simultaneous view from both optical accesses on the same flame cone. For Mie-Scattering investigation a pulsed Nd:YAG-Laser with 532 nm wavelength was used for illumination and a CCD-camera with an upstream 532 nm optical filter was used for visualization. This combination allows observing the liquid fuel distribution even after start of combustion. Penetration depth of liquid fuel spray was analysed for different swirl numbers, intake manifold pressures, injection timings and injection pressures. High-speed flame visualization was done by two CMOS cameras which were mounted at two different optical accesses with view on the same flame cone. Due to this application a simultaneous measurement of the flame distribution of two different views was possible. This enables a 3-dimensional investigation of the flame propagation process. In addition, the advanced two colour pyrometry was applied for five different regions of the same flame cone. Due to a calibration after each measurement the absolute radiant flux can be calculated and thus the absolute temperature and soot concentration. With this procedure it was possible to give a real temperature and soot concentration distribution of the flame cone. To provide more detailed information about the combustion process, selected engine operation points were simulated with a modified version of the CFD code KIVA3v-Release2 at the IFKM. The simulated results were compared to the measured data.


2009 ◽  
Vol 137 (2) ◽  
pp. 37-49
Author(s):  
Robin VANHAELST ◽  
Werner HENTSCHEL ◽  
Christian MÜLLER ◽  
Jakub CZAJKA

In this paper the systematic development of an optical swirl sensor to measure the swirl ratio in an operating serial turbocharged DI-diesel engine is described. The optical sensor detects the visible light of the combustion, in particular the emission of the sooting flame in a wavelength range from 600 nm up to 1000 nm. The acceptance angle is so small that the soot clouds from every spray can be detected as they are being turned under the optical sensor by the swirling flow. In a first part the new optical probe method was validated on a transparent engine by comparison with high speed video recordings. In the second part several hardware variations were made on a serial DI-diesel engine which was equipped with a variable swirl valve. The influence of the opened- and closed swirl valve constellation and the piston geometry on the swirl ratio was measured with the optical probe technique. The results were compared with a zero dimensional simulation model. There was a good agreement between the swirl measurements and the 0D-model. The optical swirl sensor has proven to be a powerful tool to optimise the combustion process. Without any modifications on the cylinder head, the effect of application parameters and hardware parts on the swirl strength can be quantified for all engine loads and speeds.


CFD letters ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 1-11
Author(s):  
Fatin Farhanah Zulkurnai ◽  
Wan Mohd Faizal Wan Mahmood ◽  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor

Reactivity controlled compression ignition (RCCI) engine give advantages over conventional diesel engine with the promising engine power and good control on NOx and soot emission. The trend of the RCCI concept is still new and Is very important to control the ignition in order to control the combustion progress and emission. The objective of this study is to provide data on the combustion characteristics and emission of diesel as high reactive, and ethanol as the low reactive fuel in the RCCI engine. The engine speed and injection timing were varied. Simulation work was conducted by using the Converge CFD software based on the Yanmar TF90 diesel engine parameter. Results show that operating the engine at low speed resulting in better engine performance and low carbon emissions due to the sufficient oxygen contents. For the high-speed engine, advancing the injection timing improves the fuel and air reactivity and steeper the equivalence ratio gradient, which result in a complete combustion process.


2003 ◽  
Vol 38 (5) ◽  
pp. 303-308
Author(s):  
Takeshi Imahashi ◽  
Eiji Tomita ◽  
Sadami Yoshiyama ◽  
Kouji Moriyama

Sign in / Sign up

Export Citation Format

Share Document