A NEW ACTIVE NETWORK SUITABLE FOR REALIZING LADDER FILTERS AND TRANSFORMER SIMULATOR

2007 ◽  
Vol 16 (01) ◽  
pp. 29-41 ◽  
Author(s):  
ERKAN YUCE ◽  
SHAHRAM MINAEI

A general configuration suitable for realizing low-pass and high-pass ladder filters and transformer simulator, depending on the passive element selection is proposed. The proposed network employs only grounded passive components without requiring matching conditions. The values of the synthetic inductances of the transformer and low-pass ladder filter can be changed independently. SPICE simulation results confirming the theoretical analysis are included.

Author(s):  
Manoj Kumar Jain

Some time back, Kircay reported an electronically-tunable current-mode square-root-domain first-order filter capable of realizing low-pass (LP), high-pass (HP) and all-pass (AP) filter functions. When simulated in SPICE, Kircay’s circuit has been found to exhibit DC offsets in case of LP and AP responses and incorrect transient response in case of HP response. In this paper, an improved circuit overcoming these difficulties/deficiencies has been suggested and its workability of the improved circuit as well as its capability in meeting the intended objectives has been demonstrated by SPICE simulation results.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450116 ◽  
Author(s):  
HASAN SOZEN ◽  
UGUR CAM

The memristor has drawn the worldwide attention since it has been discovered at HP laboratory on 1 May 2008. Since then many researchers are taking efforts to find its applications in various areas. In this paper, we study the filter characteristics of first-order low pass and high pass filters employing memristor with a capacitor. The paper provides a comparative analysis between low pass and high pass filter circuits that utilizing ordinary resistor or memristor with a capacitor. The theoretical analyzes are verified with SPICE simulation results using a memristor SPICE model with nonlinear dopant drift and MATLAB environment. The effect of change of the input frequency and initial resistance value of memristor on the cut-off frequencies of the presented low pass and high pass filters are investigated. The memory effect of memristor is represented by simulation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hua-Pin Chen

A novel voltage-mode multifunction biquadratic filter with one input and six outputs is presented. The proposed circuit can realize inverting and noninverting low-pass, bandpass, and high-pass filters, simultaneously, by using two inverting second-generation current conveyors (ICCIIs), two grounded capacitors, and four resistors. Moreover, the proposed circuit offers the following attractive advantages: no requirements for component matching conditions, the use of only grounded capacitors, and low active and passive sensitivities. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. J. Plotnikov ◽  
A. V. Kulikov ◽  
V. E. Strigalev ◽  
I. K. Meshkovsky

The dependence of the dynamic range of the phase generated carrier (PGC) technique on low-pass filters passbands is investigated using a simulation model. A nonlinear character of this dependence, which could lead to dynamic range limitations or measurement uncertainty, is presented for the first time. A detailed theoretical analysis is provided to verify the simulation results and these results are consistent with performed calculations. The method for the calculation of low-pass filters passbands according to the required dynamic range upper limit is proposed.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550047 ◽  
Author(s):  
Firat Yucel ◽  
Erkan Yuce

In this paper, a new voltage-mode (VM) multifunctional filter comprising two second-generation current conveyors (CCIIs) is proposed. The proposed filter with one input and three outputs is also composed of three resistors and two grounded capacitors. The proposed filter has high input impedance; thus, it can be easily connected with other VM circuits. The proposed filter can simultaneously provide low-pass (LP), band-pass (BP) and high-pass (HP) responses. A number of time domain and frequency domain simulation results are included to confirm the claimed theory.


2021 ◽  
Author(s):  
Ravendra Singh ◽  
Dinesh Prasad

Abstract In this manuscript, two different topologies are presented for the realization of a conventional filter/inverse filter using the Four Terminal Floating Nullor Transconductance Amplifier (FTFNTA). The first topology can synthesize the inverse low-pass (ILP), inverse high-pass (IHP), and inverse band-pass (IBP) filter with applicable impedance choices. Subsequently, another topology that can synthesize conventional low-pass (LP), and band-pass (BP) active filter, as well as inverse high-pass (IHP), and inverse band-pass (IBP) filter from the same circuit topology with a viable solution of impedances as resistor/capacitor. To verify the workability of both topologies, SPICE simulation is performed using 180nm CMOS TSMC technology.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Munir A. Al-Absi

This paper presents a new compact controllable impedance multiplier using CMOS technology. The design is based on the use of the translinear principle using MOSFETs in subthreshold region. The value of the impedance will be controlled using the bias currents only. The impedance can be scaled up and down as required. The functionality of the proposed design was confirmed by simulation using BSIM3V3 MOS model in Tanner Tspice 0.18 μm TSMC CMOS process technology. Simulation results indicate that the proposed design is functioning properly with a tunable multiplication factor from 0.1- to 100-fold. Applications of the proposed multiplier in the design of low pass and high pass filters are also included.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Aixia Yuan ◽  
Shaojun Fang ◽  
Zhongbao Wang ◽  
Hongmei Liu ◽  
Hongjun Zhang

A band-stop filter with three different negative group delay functions in the passband, namely, band pass, high pass and low pass, is proposed, which has small insertion loss. The capacitance, inductance, and resistance meet different conditions, and the circuit can realize three different negative group delay characteristics. The theoretical calculation and equation derivation are given. A band-stop filter with negative group delay function is fabricated, and the measured results are basically consistent with the simulation results. The correctness of the design is verified.


Author(s):  
Rashmika Rai ◽  
◽  
S Indu

The study presents a universal filter and Oscillator obtain by applying only single input. All the passive components used are grounded which is suitable for integrated circuit implementation. In the circuit by applying for single input simultaneously low pass, High Pass, Band Pass, All Pass, and Notch filter is obtained by using two blocks of Differential Difference current conveyor transconductance amplifier.


2009 ◽  
Vol 18 (05) ◽  
pp. 857-873 ◽  
Author(s):  
AHMED M. SOLIMAN

In this paper, eight new Frequency Dependent Negative Resistance (FDNR) circuits using two current conveyors or inverting current conveyors or a combination of the two types are introduced. The proposed circuits are canonic and they use two grounded capacitors and one floating resistor. The generation of grounded capacitor minimum passive component oscillators from the FDNR circuits is also considered. It is found that two of the recently reported attractive oscillators are among the family of the generated oscillator circuits. Additional six new oscillator circuits based on the FDNR circuits are introduced in this paper. Spice simulation results using technology: SCN 05 feature size 0.5 μm, MOSIS Vendor: AGILENT to demonstrate the practicality of the proposed oscillators are included.


Sign in / Sign up

Export Citation Format

Share Document