DESIGN OF LOW-VOLTAGE LOW-POWER COMPLEX ACTIVE-RC FILTERS

2013 ◽  
Vol 22 (09) ◽  
pp. 1340003
Author(s):  
CHAIRAT UPATHAMKUEKOOL ◽  
AMORN JIRASEREE-AMORNKUN ◽  
JIRAYUTH MAHATTANAKUL

In this paper, novel realization of low-voltage low-power active-RC complex filters is presented. The previously proposed method to compensate for opamp non-idealities in real active-RC filter design, which is suitable for low-power low-voltage application, is extended such that it can be used in the case of complex filter design. Subsequently, fifth-order Chebyshev complex filter with 1-MHz center frequency, bandwidth and 0.5-dB bandpass ripple has been designed for Bluetooth application. Simulation results show that the designed complex filter consumes about 1 mW under 1-V single supply. Its image rejection ratio (IRR) and out-of-band third-order input intercept point (IIP3) are about 80 dB and 37.5 dBV p respectively.

2013 ◽  
Vol 760-762 ◽  
pp. 54-59
Author(s):  
Yang Lin ◽  
Zhi Qun Li ◽  
Chen Jian Wu ◽  
Meng Zhang ◽  
Zeng Qi Wang

A fourth-order low-pass continuous-time filter for a WSN transmitter is presented. The active RC filter was chosen for the high linearity, designed by using the leapfrog topology imitates the passive filter. The operation amplifier (op-amp) adopted by the filter is feed-forward operation amplifier, which could get the GBW as large as possible under the low power consumption. The cut-off frequency deviation due to the process corner, aging and temperature deviation is adjusted by an automatic frequency tuning circuit. The filter in a 0.18μm RF CMOS technology consumes 1mW from a 1V power supply. The measured results of the chip show that the bandwidth is about 1.5MHz. The voltage gain of filter is about-4.5dB with the buffer, the ripple in the pass-band is lower than 0.5 dB, and the channel rejection ratio is larger than 30dB at 4MHz.


VLSI Design ◽  
2007 ◽  
Vol 2007 ◽  
pp. 1-13 ◽  
Author(s):  
Jianhong Xiao ◽  
Guang Zhang ◽  
Tianwei Li ◽  
Jose Silva-Martinez

A low-cost low-power DTV tuner for current digital television application is described. In order to increase integration level and reduce power consumption for off-air DTV tuner application, an SAW-filterless tuner front-end architecture is adopted. As a part of the concept, key building blocks for this architecture are implemented on a main stream 0.35 μm CMOS technology. Experimental measurements for the prototype chip validate the system architecture; the prototype consumes 300 mw and achieves 45 dB of image rejection ratio within the entire 750 MHz frequency band.


This paper presents a new concept of bandpass filter design based on quarter-wave resonator which covers ISM band (2.4-2.48 GHz) can be used for applications such as wireless fidelity (Wi-Fi) and Global System for Mobile communication (GSM). A fifth-order Butterworth bandpass filter is designed using standard filter coefficients with fractional bandwidth of 50% for the center frequency of 2.1 GHz. Filter design is achieved using quarter-wave resonator, and the obtained response satisfies the desired filter specifications. The insertion loss of 21 dB is achieved at the cutoff frequency of 2.1 GHz. The passband frequency of 1.877 GHz to 2.772 GHz is achieved in the proposed design. The standard coefficients of the Butterworth filter were modified to propose a new type of asymmetrical filter coefficients. The designed filter has better response than existing method in terms of bandwidth and insertion loss. The designed Bandpass filter has a passband frequency of 1.8 GHz to 2.7 GHz. Therefore, the designed bandpass filter can be used for both Wi-Fi and GSM applications simultaneously.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2711
Author(s):  
Shilpa Mehta ◽  
Xue-Jun Li ◽  
Massimo Donelli

A reconfigurable gm-boosted, image-rejected downconversion mixer is presented in this paper using the SiGe 8 HP technology. The proposed mixer operates within 0.9–13.5 GHz that is suitable for software-defined radio applications. The conversion mixer comprises of resistive biased radio frequency (RF) section, double balanced Gilbert cell mixer core sections divided as per I and Q stages for image-rejection purpose, inductively peaked gm-boosting section and tunable filter section, respectively. In comparison to previous works in the scientific literature, the design shows enhanced conversion gain (CG), noise figure (NF), and image-rejection ratio (IRR). For the entire band of operation, the mixer attains a good return loss |S11| of <−10 dB. Additionally, the design accomplishes an excellent CG of 22 dB, NF of 2.5 dB, and an image-rejection ratio of 30.2 dB at maximum frequency. Finally, a third-order intercept point (IP3) of −3.28 dBm and 1 dB compression point (CP1) of −13 dBm, respectively, shows moderate linearity performance.


Sign in / Sign up

Export Citation Format

Share Document