EXPERIMENTAL CHARACTERIZATION OF PROTON RADIATED SiGe POWER HBTs AT EXTREME TEMPERATURES

2013 ◽  
Vol 22 (10) ◽  
pp. 1340026 ◽  
Author(s):  
GUOXUAN QIN ◽  
JIANGUO MA ◽  
NINGYUE JIANG ◽  
ZHENQIANG MA ◽  
PINGXI MA ◽  
...  

The performances of proton irradiated silicon–germanium (SiGe) power heterojunction bipolar transistors (HBTs) at extreme temperatures (liquid nitrogen temperature and high stage-temperature of 120°C with junction temperature over 160°C) are reported in this work. SiGe power HBTs with total emitter area of ~ 1460 μm2 are fabricated in a commercial BiCMOS process, and irradiated with proton at different fluences from 1 × 1012 p/cm2 to 5 × 1013 p/cm2. Experimental characterizations are conducted for pre- and post-radiation devices at room temperature, cryogenic temperature and high temperature. The results demonstrate that the proton-irradiated SiGe power HBTs are naturally suitable for electronic operations at extreme temperatures. Specifically, investigation of proton radiation on SiGe power HBTs at liquid nitrogen temperature (77 K) indicates a significant potential for space applications. In addition, SiGe power HBTs show better tolerance of proton radiation at high temperature of 120°C (junction temperature over 160°C). SiGe power HBTs demonstrate great potential in power amplification for wireless communication systems under severe radiation and extreme temperature environment (cryogenic and high temperatures) even without any intentional radiation hardening.

2015 ◽  
Vol 1 (1) ◽  
pp. 37-48
Author(s):  
Anna Andreevna Demina ◽  
A V Safonov ◽  
O A Kovalchuk ◽  
E R Zapretilina ◽  
I Yu Rodin ◽  
...  

In recent years increasingly discusses the prospects of application of high-temperature superconductors (HTS) as the winding current-carrying elements of magnetic systems for various purposes. It seems particularly attractive possibility of such systems at liquid nitrogen temperature. The article describes the prototype of module of the magnetic system which is made on the basis of high-temperature superconducting tapes, designed for the installation and testing on a working model of a static levitation. In the working model levitation of the platform carried by the interaction of the magnetic field of the assembly of permanent magnets mounted on the platform with a field similar to assemblies located in the track structure. Compact HTS module replaces the two assemblies of permanent magnets mounted on the platform. Each block of the module represents HTS racetrack coil with current inputs, power structure, positioning system and bracing which is placed in a cryostat, providing at minimum wall thickness of the required mechanical strength and thermal insulation at liquid nitrogen temperature. The prototype of unified superconducting module successfully passed preliminary tests.


2010 ◽  
Vol 7 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Rajeshuni Ramesham

Ceramic column grid array packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performance, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short-term and long-term space missions. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide have been assembled, inspected nondestructively, and subsequently subjected to extreme temperature thermal cycling to assess the reliability for future deep space, short- and long-term, extreme temperature missions. In this investigation, the employed temperature range covers from −185°C to +125°C extreme thermal environments. The test hardware consists of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The CCGA717 package is 33 mm × 33 mm with a 27 × 27 array of 80%/20% Pb/Sn columns on a 1.27 mm pitch. The resistance of daisy-chained, CCGA interconnects was continuously monitored as a function of thermal cycling. Electrical resistance measurements as a function of thermal cycling are reported and the tests to date have shown significant change in daisy chain resistance as a function of thermal cycling. The change in interconnect resistance becomes more noticeable as the number of thermal cycles increases. This paper will describe the experimental test results of CCGA testing under extreme temperatures. Standard Weibull analysis tools were used to extract the Weibull parameters to understand the CCGA failures. Optical inspection results clearly indicate that the solder joints of columns with the board and the ceramic package have failed as a function of thermal cycling. The first failure was observed at the 137th thermal cycle and 63.2% failures of daisy chains have occurred by about 664 thermal cycles. The shape parameter extracted from the Weibull plot was about 1.47, which indicates the failures were related to failures that occurred during the flat region or useful life region of the standard bathtub curve. Based on this experimental test data, one can use the CCGAs for the temperature range studied for ∼100 thermal cycles (ΔT = 310°C, 5°C/minute, and 15 min dwell) with a high degree of confidence for high reliability space and other applications.


1987 ◽  
Vol 01 (07n08) ◽  
pp. 309-314 ◽  
Author(s):  
DING SHIYING ◽  
YAN JIALIE ◽  
SHI KEXING ◽  
YU ZHENG ◽  
CHENG JUN ◽  
...  

We have measured the magnetizations and determined the dependence of lower critical magnetic fields on temperature for high Tc Y-Ba-Cu-O Superconductor in liquid nitrogen temperature region. The structure examinations and the measurements of virgin magnetization in small fields show that our samples are made up of granules coupled to each other. Therefore the measured lower critical fields are attributed to the values at which flux enters the granulas.


Author(s):  
Yinlong Wei ◽  
Kuibo Lan ◽  
Zhi Wang ◽  
Junqing Wei ◽  
Zhenqiang Ma ◽  
...  

The DC and AC performances of proton radiated Silicon-Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) with different emitter areas at liquid nitrogen temperature (77 K), room temperature and heating hotplate (393 K) were presented in this work. Performance dependence on the emitter area and temperature was investigated. Results showed that SiGe HBTs with a large emitter area had more damage by proton radiation. Furthermore, the SiGe HBTs showed better tolerance to proton radiation at extreme temperatures than at room temperature. To reveal the underlying mechanism, the radiated SiGe HBTs were modeled based on the device structure and parameters. The electron density, Shockley–Read–Hall (SRH) recombination and carrier mobility were extracted from the device model and demonstrated to have major impacts on the performance dependence of the radiated SiGe HBTs. The results provide useful guidance for the application of SiGe HBTs at extreme environments.


2015 ◽  
Vol 1 (2) ◽  
pp. 49-61 ◽  
Author(s):  
Dmitry Maksimovic Filippov

In recent years increasingly discusses the prospects of application of high-temperature superconductors (HTS) as the winding current-carrying elements of magnetic systems for various purposes. It seems particularly attractive possibility of such systems at liquid nitrogen temperature. The article describes the prototype of module of the magnetic system which is made on the basis of high-temperature superconducting tapes, designed for the installation and testing on a working model of a static levitation. In the working model levitation of the platform carried by the interaction of the magnetic field of the assembly of permanent magnets mounted on the platform with a field similar to assemblies located in the track structure. Compact HTS module replaces the two assemblies of permanent magnets mounted on the platform. Each block of the module represents HTS racetrack coil with current inputs, power structure, positioning system and bracing which is placed in a cryostat, providing at minimum wall thickness of the required mechanical strength and thermal insulation at liquid nitrogen temperature. The prototype of unified superconducting module successfully passed preliminary tests.


Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
O. T. Inal ◽  
L. E. Murr

When sharp metal filaments of W, Fe, Nb or Ta are observed in the field-ion microscope (FIM), their appearance is differentiated primarily by variations in regional brightness. This regional brightness, particularly prominent at liquid nitrogen temperature has been attributed in the main to chemical specificity which manifests itself in a paricular array of surface-atom electron-orbital configurations.Recently, anomalous image brightness and streaks in both fcc and bee materials observed in the FIM have been shown to be the result of surface asperities and related topographic features which arise by the unsystematic etching of the emission-tip end forms.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Sign in / Sign up

Export Citation Format

Share Document