ON THE REALIZATION OF HIGH PERFORMANCE CURRENT CONVEYORS AND THEIR APPLICATIONS

2013 ◽  
Vol 22 (03) ◽  
pp. 1350015 ◽  
Author(s):  
EMRE ARSLAN ◽  
SHAHRAM MINAEI ◽  
AVNI MORGUL

In this work, a wideband and high-performance CMOS implementation of 2nd-generation current conveyor (CCII) is proposed. The proposed circuit is composed of a high performance voltage follower stage which is based on differential pairs to provide high voltage swings on input and output ports and a current follower stage. It is shown that the proposed voltage follower stage can be used to implement high performance 1st and 3rd-generation current conveyors (CCI and CCIII, respectively) that have very small equivalent impedances on ports X, high equivalent impedances on ports Y and Z and also high-valued voltage and current transfer bandwidths. 2nd and 3rd order filter circuits as well as a half-wave rectifier circuit are given to show the performance and usefulness of the proposed current conveyor circuits. The simulation and experimental results are given to verify the theoretical analyses.

2018 ◽  
Vol 27 (11) ◽  
pp. 1850170 ◽  
Author(s):  
Georgia Tsirimokou ◽  
Aslihan Kartci ◽  
Jaroslav Koton ◽  
Norbert Herencsar ◽  
Costas Psychalinos

Due to the absence of commercially available fractional-order capacitors and inductors, their implementation can be performed using fractional-order differentiators and integrators, respectively, combined with a voltage-to-current conversion stage. The transfer function of fractional-order differentiators and integrators can be approximated through the utilization of appropriate integer-order transfer functions. In order to achieve that, the Continued Fraction Expansion as well as the Oustaloup’s approximations can be utilized. The accuracy, in terms of magnitude and phase response, of transfer functions of differentiators/integrators derived through the employment of the aforementioned approximations, is very important factor for achieving high performance approximation of the fractional-order elements. A comparative study of the accuracy offered by the Continued Fraction Expansion and the Oustaloup’s approximation is performed in this paper. As a next step, the corresponding implementations of the emulators of the fractional-order elements, derived using fundamental active cells such as operational amplifiers, operational transconductance amplifiers, current conveyors, and current feedback operational amplifiers realized in commercially available discrete-component IC form, are compared in terms of the most important performance characteristics. The most suitable of them are further compared using the OrCAD PSpice software.


2013 ◽  
Vol 22 (09) ◽  
pp. 1340001 ◽  
Author(s):  
JIUN-WEI HORNG ◽  
TO-YAO CHIU ◽  
CHING-PAO HSIAO ◽  
GUANG-TING HUANG

A current-mode universal biquadratic filter with three input terminals and one output terminal is presented. The architecture uses two current conveyors (CCs), two grounded capacitors and two grounded resistors; and can realize all standard second-order filter functions — highpass, bandpass, lowpass, notch and allpass. Moreover, the circuit still offers the following advantage features: very low active and passive sensitivities, using of grounded capacitors and resistors which is ideal for integrated circuit implementation, without requirements for critical component matching conditions and very high output impedance. The workability of the proposed circuit has been verified via HSPICE simulations using TSMC 0.18 μm, level 49 MOSFET technology.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1033
Author(s):  
Alessandro Nastro ◽  
Andrea De Marcellis ◽  
Marco Ferrari ◽  
Vittorio Ferrari

A Current-Mode (CM) TransImpedance Amplifier (TIA) based on Second Generation Current Conveyors (CCIIs) for capacitive microsensor measurements is presented. The designed electronic interface performs a capacitance-to-voltage conversion using 3 CCIIs and 3 resistors exploiting a synchronous-demodulation technique to improve the overall detection sensitivity and resolution of the system. A CM-TIA solution designed at transistor level in AMS0.35 µm integrated CMOS technology with a power consumption lower than 900 µW is proposed. Experimental results obtained with a board-level prototype show linear behavior of the proposed interface circuit with a resolution up to 34.5 fF and a sensitivity up to 223 mV/nF, confirming the theoretical expectations.


2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Worapong Tangsrirat

This paper describes the conception of the current follower transconductance amplifier (CFTA) with electronically and linearly current tunable. The newly modified element is realized based on the use of transconductance cells (Gms) as core circuits. The advantage of this element is that the current transfer ratios (iz/ipandix/iz) can be tuned electronically and linearly by adjusting external DC bias currents. The circuit is designed and analyzed in 0.35 μm TSMC CMOS technology. Simulation results for the circuit with ±1.25 V supply voltages show that it consumes only 0.43 mw quiescent power with 70 MHz bandwidth. As an application example, a current-mode KHN biquad filter is designed and simulated.


Author(s):  
Michael Parizh

Abstract HTS tokamak SPARC is under development by the team lead by CFS, Cambridge, MA. The magnet will have toroidal coils operating at 20 T at a current in the 25 to 40 kA range. The ViewPoint describes VIPER, an advanced TSTC-based HTS cable that has a potential to meet all the criteria required for the HTS tokamak. If proven to be successful, the cable approach promises long lengths, hundreds of meters, of the high-performance cable with predictable and repeatable properties.


Sign in / Sign up

Export Citation Format

Share Document