Very Compact and Efficient 32-Bit AES Core Design Using FPGAs for Small-Footprint Low-Power Embedded Applications

2016 ◽  
Vol 25 (07) ◽  
pp. 1650080 ◽  
Author(s):  
Raed Bani-Hani ◽  
Khaldoon Mhaidat ◽  
Salah Harb

In this paper, a very compact and efficient 32-bit FPGA design for the Advanced Encryption Standard (AES) algorithm is presented. The design is very well suited for small foot-print low-power embedded applications. The design is validated and synthesized using the Xilinx ISE Design Suite. To the best of our knowledge, our design is the most efficient in terms of throughput to area ratio and requires the smallest number of lookup tables (LUTs), logic slices, and registers. It also achieves the highest throughput among designs that do not use DSPs. It is also very power-efficient; it can process more than 10 Gbps/W on Kintex-7 FPGA.

Author(s):  
El Adib Samir ◽  
Raissouni Naoufal

For real-time embedded applications, several factors (time, cost, power) that are moving security considerations from a function-centric perspective into a system architecture (hardware/software) design issue. The National Institute of Standards and Technology (NIST) adopts Advanced Encryption Standard (AES) as the most widely used encryption algorithm in many security applications. The AES algorithm specifies 10, 12 and 14 rounds offering different levels of security. Although the number of rounds determines the strength of security, the power consumption issue has risen recently, especially in real-time embedded systems. In this article, the authors present real time implementation of the AES encryption on the compactRIO platform for a different number of AES rounds. The target hardware is NI cRIO-9022 embedded real-time controller from National Instruments (NI). The real time encryption processing has been verified successfully. The power consumption and encryption time experimental results are presented graphically for 10, 12 and 14 rounds of processing.


2021 ◽  
Author(s):  
R. Sornalatha ◽  
N. Janakiraman ◽  
K. Balamurugan ◽  
Arun Kumar Sivaraman ◽  
Rajiv Vincent ◽  
...  

In this work, we obtain an area proficient composite field arithmetic Advanced Encryption Standard (AES) Substitution (S) byte and its inverse logic design. The size of this design is calculated by the number of gates used for hardware implementation. Most of the existing AES Substitution box hardware implementation uses separate Substitution byte and its inverse hardware structures. But we implement the both in the same module and a control signal is used to select the substitution byte for encryption operation and its inverse for the decryption operation. By comparing the gate utilization of the previous AES S–Box implementation, we reduced the gate utilization up to 5% that is we take only 78 EX-OR gates and 36 AND gates for implementing the both Substitution byte and its inverse. While implementing an AES algorithm in circuitry or programming, it is liable to be detected by hackers using any one of the side channel attacks. Data to be added with a random bit sequence to prevent from the above mentioned side channel attacks.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 52
Author(s):  
Dharmavaram Asha Devi ◽  
Chintala Sandeep ◽  
Sai Sugun L

The proposed paper is discussed about the design, verification and analysis of a 32-bit Processing Unit.  The complete front-end design flow is processed using Xilinx Vivado System Design Suite software tools and target verification is done by using Artix 7 FPGA. Virtual I/O concept is used for the verification process. It will perform 32 different operations including parity generation and code conversions: Binary to Grey and Grey to Binary. It is a low power design implemented with Verilog HDL and power analysis is implementedwith clock frequencies ranging from 10MhZ to 100GhZ. With all these frequencies, power analysis is verified for different I/O standards LVCMOS12, LVCMOS25 and LVCMOS33.  


Sign in / Sign up

Export Citation Format

Share Document