New Voltage-Mode Sinusoidal Oscillators Using VDIBAs

2019 ◽  
Vol 29 (04) ◽  
pp. 2050052
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen

This paper presents two new voltage-mode sinusoidal oscillators based on voltage differencing inverting buffered amplifier (VDIBA). The first proposed circuit exhibits independent and electronic control of oscillation condition by using the bias current of the VDIBA. The proposed configuration contains only single VDIBA, two grounded capacitors and two resistors, which are the least number of active components and the minimum number of passive components necessary for realizing voltage-mode oscillator topology. The second proposed circuit exhibits independent and electronic control on the condition of oscillation without affecting the oscillation frequency by adjusting the separate bias currents of the VDIBAs. The proposed configuration contains two VDIBAs, two grounded capacitors and one resistor, which can provide four quadrature voltage outputs simultaneously. Both proposed circuits enjoy only two grounded capacitors, which are suitable for monolithic integration. HSpice simulations and experimental results are included to confirm the theoretical analysis.

2010 ◽  
Vol 19 (05) ◽  
pp. 1069-1076 ◽  
Author(s):  
ABHIRUP LAHIRI

A number of sinusoidal oscillators using current differencing buffered amplifiers (CDBAs) have been reported in the literature. However, only three of them are canonic quadrature oscillators (i.e., requiring two capacitors). The aim of this letter is to present additional realizations of single/dual-resistance-controlled quadrature oscillators using CDBAs. Four voltage-mode quadrature oscillators are proposed, which provide the following advantageous features: (i) use of reduced and canonic component count, viz. two CDBAs, three/four resistors and two capacitors, (ii) all passive components are grounded or virtually grounded, which is favorable from integration point of view and (iii) independent and non-interactive resistor control of the condition of oscillation (CO) and the frequency of oscillation (FO). Simulation results verifying the workability of the proposed circuits have been included.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1493
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Chia-Ling Lee

This article presents a versatile voltage-mode (VM) biquad filter with independently electronic tunability. The proposed structure using one dual-output operational transconductance amplifier, three single-output operational transconductance amplifiers (OTAs) and two grounded capacitors was explored to derive a new VM quadrature oscillator with the independent control of the oscillation frequency and the oscillation condition. The proposed versatile VM biquad filter achieves nearly all of the main advantages: (i) simultaneous realizations of band-reject, band-pass, and low-pass from the same architecture, (ii) multiple-input and multiple-output functions, (iii) independent electronic adjustability of quality factor and resonant angular frequency, (iv) no resistor needed, (v) all input terminals with cascade functions, (vi) no additional inverting amplifier for input signals, (vii) using only grounded capacitors, and (viii) easy to implement a VM quadrature oscillator with independent electronically controlled oscillation frequency and oscillation condition. The proposed versatile VM biquad filter employs only four OTAs and two grounded capacitors. The active components of the proposed VM biquad filter are one less than that of recent reports. The proposed circuit also brings versatility and simplicity to the design of VM biquad filters and VM quadrature oscillators. Filters and oscillators with less active and passive components have the advantages of low cost, low power dissipation, low circuit complexity, and low noise. Commercially available integrated circuit LT1228 and discrete components can be used to implement the proposed OTA-based circuits. The simulation and experiment results validated the theoretical analysis.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Ashish Ranjan ◽  
Sajal K. Paul

This paper proposes a multi-input single-output (MISO) second-order active-C voltage mode (VM) universal filter using two second-generation current-controlled current conveyors (CCCIIs) and two equal-valued capacitors. The proposed circuit realizes low pass, band pass, high pass, all pass, and notch responses from the same topology. The filter uses-minimum number of passive components and no resistor which is suitable for IC Design. The filter enjoys low-sensitivity performance and exhibits electronic and orthogonal tunability of pole frequency () and quality factor () via bias current of CCCIIs. PSPICE simulation results confirm the theory.


2004 ◽  
Vol 27 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Jiun-Wei Horng

A four-inputs and two-outputs voltage-mode universal biquadratic filter using only two operational transconductance amplifiers (OTAs) and two capacitors is presented. The new circuits offer several advantages, such as employing the minimum number of active and passive components (two OTAs and two capacitors); the versatility to synthesize highpass, bandpass, lowpass, notch and allpass responses; high input impedance and employing only grounded capacitors for bandpass and lowpass filter realizations; some derived filter types enjoy the availability of one more simultaneously output filter response and good sensitivities performance


Author(s):  
Kasim K. Abdalla

A novel interesting type of variable phase angle voltage mode oscillator using modern building block has been presented in this paper. The new proposed oscillator configuration which uses four voltage differencing gain amplifier (VDGA) and two grounded capacitors can generate two sinusoidal signals that change out of phase by 0 to 90 degree. It has four floating and explicit voltage mode outputs where every two outputs have the same phase. The circuit is characterized by (i) the condition of phase angle of the oscillation (PO) (this concept is introduced for the first time in this paper) can be tuned electronically (ii) the gain of the floating outputs can be controlled independently (iii) it provides electronic control of condition of oscillation (CO) and independent control of frequency of oscillation (FO). The Total Harmonic Distortion (THD) of the output waveforms was obtained and the results were reasonability values (less than 4.5%). The non-ideal analysis and simulation results are investigated and confirmed the theoretical analysis based upon VDGAs implementable in 0.35μm CMOS technology. Simulation results include time response and frequency response outputs generated by using the PSPICE program.


Author(s):  
Jürgen Minuth

Modern medium and high end vehicles are no longer imaginable without using technologies to broadcast local available data. The speed information for example is used by many well known functions: the anti blocking system, the radio, the dashboard, the cruise control, the electronic stability program, etc. Usually, this data is distributed among vehicle’s electronic control units by various serial bus systems. The succeeding sections introduce the automotive communication system named FlexRay™. The development of FlexRay™ had been initialized by requirements expected for drive-by-wire systems. The content is focused on its electrical physical layer beginning with active components like bus interfaces as well as passive components like common mode filters and bus-cables. Comparisons to the state of the art systems CAN and LIN are used to support the comprehensibility.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
Montree Kumngern ◽  
Kobchai Dejhan

A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs), two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Worapong Tangsrirat ◽  
Tattaya Pukkalanun ◽  
Wanlop Surakampontorn

The voltage-mode universal biquadratic filter and sinusoidal quadrature oscillator based on the use of current differencing buffered amplifiers (CDBAs) as active components have been proposed in this paper. All the proposed configurations employ only two CDBAs and six passive components. The first proposed CDBA-based biquad configuration can realize all the standard types of the biquadratic functions, that is, lowpass, bandpass, highpass, bandstop, and allpass, from the same topology, and can also provide orthogonal tuning of the natural angular frequency(ωo)and the bandwidth (BW) through separate virtually grounded passive components. By slight modification of the first proposed configuration, the new CDBA-based sinusoidal quadrature oscillator is easily obtained. The oscillation condition and the oscillation frequency are independently adjustable by different virtually grounded resistors. The sensitivity analysis of all proposed circuit configurations is shown to be low. PSPICE simulations and experimental results based upon commercially available AD844-type CFAs are included, which confirm the workability of the proposed circuits.


2016 ◽  
Vol 16 (2) ◽  
pp. 35-41 ◽  
Author(s):  
Roman Sotner ◽  
Jan Jerabek ◽  
Norbert Herencsar ◽  
Jiun-Wei Horng ◽  
Kamil Vrba ◽  
...  

Abstract This work presents an example of implementation of electronically controllable features to an originally unsuitable circuit structure of oscillator. Basic structure does not allow any electronic control and has mutually dependent condition of oscillation (CO) and frequency of oscillation (FO) if only values of passive elements are considered as the only way of control. Utilization of electronically controllable current conveyor of second generation (ECCII) brings control of CO independent of FO. Additional application of voltage amplifier with variable gain in both polarities (voltage-mode multiplier) to feedback loop allows also important enlargement of the range of the independent FO control. Moreover, our proposal was tested and confirmed experimentally with commercially available active elements (“Diamond transistor”, current-mode multiplier, voltage-mode multiplier) in working range of tens of MHz.


2021 ◽  
Vol 11 (16) ◽  
pp. 7431
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Wei-Yuan Chen

This paper presents isomorphic circuits of voltage-mode (VM) non-inverting bandpass filters (NBPFs) and VM quadrature sinusoidal oscillators (QSOs) with independent amplitude control functionality. The proposed VM NBPFs and VM QSOs exhibit low-output impedance and independent amplitude control, which are important for easily cascading the VM operation and independent control of the amplitude gain. The proposed isomorphic circuits employ three LT1228 commercial integrated circuits (ICs), two grounded capacitors, two grounded resistors and one floating resistor. The use of grounded capacitors is beneficial for the implementation of the IC. Both NBPFs have a high-input impedance and have a wide range of independent amplitude tunable passband gain without affecting the quality factor (Q) and center frequency (fo). The Q and fo parameters of the proposed NBPFs are orthogonal tunability. By feeding back each input signal to the output response of the NBPF, two VM fully uncoupled QSOs are also proposed. The proposed VM fully uncoupled QSOs have two quadrature sinusoidal waveforms with two low-output impedances and one independent amplitude tunable sinusoidal waveform. The frequency of oscillation (FO) and the condition of oscillation (CO) are fully uncoupled and controlled electronically. The performances of the proposed isomorphic circuits have been tested with a ±5 volt power supply and are demonstrated by experimental measurements which confirm the theoretical assumptions.


Sign in / Sign up

Export Citation Format

Share Document