Combinational Counters: A Low Overhead Approach to Address DPA Attacks

2019 ◽  
Vol 29 (06) ◽  
pp. 2050097
Author(s):  
Ghobad Zarrinchian ◽  
Morteza Saheb Zamani

Differential Power Analysis (DPA) attacks are known as viable and practical techniques to break the security of cryptographic algorithms. In this type of attack, an adversary extracts the encryption key based on the correlation of consumed power of the hardware running encryption algorithms to the processed data. To address DPA attacks in the hardware layer, various techniques have been proposed thus far. However, current techniques generally impose high performance overhead. Especially, the power overhead is a serious issue which may limit the applicability of current techniques in power-constrained applications. In this paper, combinational counters are explored as a way to address the DPA attacks. By randomizing the consumed power in each clock cycle of the circuit operation, these counters can enhance the resistance of the cryptographic cores against DPA attacks with low power overhead as well as zero timing overhead. Experimental results for an AES S-Box module in 45[Formula: see text]nm technology reveal that the proposed technique is capable of achieving higher level of security in comparison to two other approaches while preserving the power and performance overhead at a same or lower level.

2012 ◽  
Vol 256-259 ◽  
pp. 2820-2825
Author(s):  
A Zadali Mohammad Kootiani ◽  
P Abedi

Differential power analysis (DPA) attack is an important threat that researchers spend great effort to make crypto algorithms resistant against DPA attacks. In order to determine whether the hardware has DPA leakage before manufacturing, an accurate power model in digital simulation has been generated. FPGAs Arrays are attractive options for hardware implementation of encryption algorithms. In this paper, we show generated power model by using integer numbers whole DES’s rounds vs. S-Box alone, and this method gives more realistic results to determine the effectiveness of the improvements protect whole DES rather than in which only informer elements in the DES round. In particular this allows the user to isolate some parts of its implementation in order to analyze information leakages directly linked to them. We review s-box because it’s get 2kbit or 20% CLB slice from FPGA to implement DES or TDES. This paper try to identify role of Sbox in DPA.


Author(s):  
Ahmed K. Jameil ◽  
Yassir A. Ahmed ◽  
Saad Albawi

Background: Advance communication systems require new techniques for FIR filters with resource efficiency in terms of high performance and low power consumption. Lowcomplexity architectures are required by FIR filters for implementation in field programmable gate Arrays (FPGA). In addition, FIR filters in multistandard wireless communication systems must have low complexity and be reconfigurable. The coefficient multipliers of FIR filters are complicated. Objective: The implementation and application of high tap FIR filters by a partial product reduce this complexity. Thus, this article proposes a novel digital finite impulse response (FIR) filter architecture with FPGA. Method: The proposed technique FIR filter is based on a new architecture method and implemented using the Quartus II design suite manufactured by Altera. Also, the proposed architecture is coded in Verilog HDL and the code developed from the proposed architecture has been simulated using Modelsim. This efficient FIR filter architecture is based on the shift and add method. Efficient circuit techniques are used to further improve power and performance. In addition, the proposed architecture achieves better hardware requirements as multipliers are reduced. A 10-tap FIR filter is implemented on the proposed architecture. Results: The design’s example demonstrates a 25% reduction in resource usage compared to existing reconfigurable architectures with FPGA synthesis. In addition, the speed of the proposed architecture is 37% faster than the best performance of existing methods. Conclusion: The proposed architecture offers low power and improved speed with the lowcomplexity design that gives the best architecture FIR filter for both reconfigurable and fixed applications.


Author(s):  
Mahadevan Suryakumar ◽  
Lu-Vong T. Phan ◽  
Mathew Ma ◽  
Wajahat Ahmed

The alarming growth of power increase has presented numerous packaging challenges for high performance processors. The average power consumed by a processor is the sum of dynamic and leakage power. The dynamic power is proportional to V^2, while the leakage current (therefore leakage power) is proportional to V^b where V is the voltage and b>1 for modern processes. This means lowering voltage reduces energy consumed per clock cycle but reduces the maximum frequency at which the processor can operate at. Since reducing voltage reduces power faster than it does frequency, integrating more cores into the processor would result in better performance/power efficiency but would generate more memory accesses, driving a need for larger cache and high speed signaling [1]. In addition, the design goal to create unified package pinout for both single core and multicore product flavors adds additional constraint to create a cost effective package solution for both market segments. This paper discusses the design strategy and performance of dual die package to optimize package performance for cost.


2011 ◽  
Vol 20 (03) ◽  
pp. 439-445 ◽  
Author(s):  
M. H. GHADIRY ◽  
ABU KHARI A'AIN ◽  
M. NADI S.

This paper, presents a new full-swing low power high performance full adder circuit in CMOS technology. It benefits from a full swing XOR-XNOR module with no feedback transistors, which decreases delay and power consumption. In addition, high driving capability of COUT module and low PDP design of SUM module contribute to more PDP reduction in cascaded mode. In order to have accurate analysis, the new circuit along with several well-known full adders from literature have been modeled and compared with CADENCE. Comparison consists of power consumption, performance, PDP, and area. Results show that there are improvements in both power consumption and performance. This design trades area with low PDP.


2020 ◽  
Vol 17 (4) ◽  
pp. 1852-1856
Author(s):  
P. Bhuvaneshwari ◽  
T. R. Jaya Chandra Lekha

This project proposes multilayer advanced high-performance bus architecture for low power applications. The proposed AHB architecture consists of the bus arbiter and the bus tracer (A.R.M.A., 1999. Specification (Rev 2.0) ARM IHI0011A). The bus arbiter, which is self motivated selects the input packet based on the control signals of the incoming packet. So that arbitration leads to a maximum performance. The On-Chip bus is an important system-on-chip infrastructure that connects major hardware components. Monitoring the on-chip bus signals is crucial to the SoC debugging and performance analysis/optimization (Gu, R.T., et al., 2007. A Low Cost Tile-Based 3D Graphics Full Pipeline with Real-Time Performance Monitoring Support for OpenGL ES in Consumer Electronics. 2007 IEEE International Symposium on Consumer Electronics, June; IEEE. pp.1–6). But, such signals are difficult to observe since they are deeply embedded in a SoC and there are often no sufficient I/O pins to access these signals. Therefore, a straightforward approach is to embed a bus tracer in SoC to capture the bus signal trace and store the trace in on-chip storage such as the trace memory which could then be off loaded to outside world for analysis. The bus tracer is capable of capturing the bus trace with different resolutions, all with efficient built in compression mechanisms such as dictionary based compression scheme for address and control signals and differential compression scheme for data. To improve the compression ratio matrix based compression which is lossless compression is used instead of differential compression. This system is designed using Verilog HDL, simulated using Modelsim and synthesized using Xilinx software.


Sign in / Sign up

Export Citation Format

Share Document