Design of a Stable Low Power 11-T Static Random Access Memory Cell

2020 ◽  
Vol 29 (13) ◽  
pp. 2050206 ◽  
Author(s):  
Ashish Sachdeva ◽  
V. K. Tomar

In this paper, a 11-T static random-access memory (SRAM) cell has been examined that shows a fair reduction in read power dissipation while upholding the stability and moderate performance. In the presented work, parametric variability analysis of various design metrices such as signal to noise margin, read current and read power of the Proposed 11T cell are presented and compared with few considered topologies. The Proposed cell offers single ended write operation and differential read operation. The improvement in read signal to noise margin and write signal to noise margin with respect to conventional 6T SRAM is 10.63% and 33.09%, respectively even when the write operation is single ended. Mean hold static noise margin of the cell for 3000 samples is [Formula: see text] times higher than considered D2p11T cell. Sensitivity analysis of data retention voltage (DRV) with respect to temperature variations is also investigated and compared with considered topologies. DRV variation with temperature is least in FF process corner. In comparison to conventional 6T SRAM cell, the write and read delay of Proposed 11T cell gets improved by [Formula: see text] and 1.64%, respectively. Proposed 11T topology consumes least read energy in comparison with considered topologies. In comparison with another considered 11T topology, i.e., D2p11T cell, Proposed cell consumes 13.11% lesser area. Process variation tolerance with Monte Carlo simulation for read current and read power has been investigated using Cadence virtuoso tool with GPDK 45-nm technology.

Author(s):  
Ashish Sachdeva ◽  
V. K. Tomar

This paper presents a circuit-level technique of designing a low power and half select free 10T Static Random-Access Memory Cell (SRAM). The proposed cell works with single end read operation and differential write operation. The proposed bit-cell is free from half select issue and supports bit interleaving format. The presented 10T cell exhibits 40.75% lower read power consumption in comparison to conventional 6T SRAM cell, attributed to reduction of activity factor during read operation. The loop cutting transistors used in core latch improve write signal-to-noise margin (WSNM) by 14.94% and read decoupled structure improve read signal-to-noise margin (RSNM) by [Formula: see text] as compared to conventional 6T SRAM. In the proposed work, variability analysis of significant design parameters such as read current, stand-by SNM, and read power of the projected 10T SRAM cell is presented and compared with considered topologies. Mean value of hold static noise margin of the cell for 3000 samples is [Formula: see text] times higher than the considered D2p11T cell. The proposed 10T cell shows [Formula: see text] and [Formula: see text] narrower read access time and write access time, respectively, as compared to conventional 6T SRAM cell. Read current to bit-line leakage current ratio of the proposed 10T cell has been investigated and is improved by [Formula: see text] as compared to conventional 6T SRAM cell. The write power delay product and read power delay product of the proposed 10T cell are [Formula: see text] and [Formula: see text] lower than conventional 6T SRAM cell. In this work, cadence virtuoso tool with Generic Process Design Kit (GPDK) 45[Formula: see text]nm technology file has been utilized to carry out simulations.


Author(s):  
Harekrishna Kumar ◽  
V. K. Tomar

In the proposed work, a differential write and single-ended read half-select free 12 transistors static random access memory cell is designed and simulated. The proposed cell has a considerable reduction in power dissipation with better stability and moderate performance. This cell operates in subthreshold region and has a higher value of read static noise margin as compared to conventional six transistors static random access memory cell. A power cut-off technique is utilized between access and pull-up transistors during the write operation. It results in an increase in write static noise margin as compared to all considered cells. In the proposed cell, read and write access time is improved along with a reduction in read/write power dissipation as compared to conventional six transistors static random access memory cell. The bitline leakage current in the proposed cell is reduced which improves the [Formula: see text] ratio of the cell under subthreshold region. The proposed cell occupies less area as compared to considered radiation-hardened design 12 transistors static random access memory cell. The computed electrical quality metric of proposed cell is better among considered static random access memory cells. Process variation analysis of read stability, access time, power dissipation, read current and leakage current has been performed with the help of Monte Carlo simulation at 3,000 points to get more soundness in the results. All characteristics of static random access memory cells are compared at various supply voltages.


2011 ◽  
Vol 12 (1) ◽  
pp. 13-30 ◽  
Author(s):  
Aminul Islam ◽  
Mohd. Hasan

This paper analyses standard 6T and 7T SRAM (static random access memory) cell in light of process, voltage and temperature (PVT) variations to verify their functionality and robustness. The 7T SRAM cell consumes higher hold power due to its extra cell area required for its functionality constraint. It shows 60% improvement in static noise margin (SNM), 71.4% improvement in read static noise margin (RSNM) and 50% improvement in write static noise margin (WSNM). The 6T cell outperforms 7T cell in terms of read access time (TRA) by 13.1%. The write access time (TWA) of 7T cell for writing "1" is 16.6 x longer than that of 6T cell. The 6T cell proves it robustness against PVT variations by exhibiting narrower spread in TRA (by 1.2 x) and Twa (by 3.4x). The 7T cell offers 65.6% saving in read power (RPWR) and 89% saving in write power (WPWR). The RPWR variability indicates that 6T ell is more robust against process variation by 3.9x. The 7T cell shows 1.3x wider write power (WPWR) variability indicating 6T cell's robustness against PVT variations. All the results are based on HSPICE simulation using 32 nm CMOS Berkeley Predictive Technology Model (BPTM).


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Kazuya Nakayama ◽  
Akio Kitagawa

We proposed and computationally analyzed a multivalued, nonvolatile SRAM using a ReRAM. Two reference resistors and a programmable resistor are connected to the storage nodes of a standard SRAM cell. The proposed 9T3R MNV-SRAM cell can store 2 bits of memory. In the storing operation, the recall operation and the successive decision operation of whether or not write pulse is required can be performed simultaneously. Therefore, the duration of the decision operation and the circuit are not required when using the proposed scheme. In order to realize a stable recall operation, a certain current (or voltage) is applied to the cell before the power supply is turned on. To investigate the process variation tolerance and the accuracy of programmed resistance, we simulated the effect of variations in the width of the transistor of the proposed MNV-SRAM cell, the resistance of the programmable resistor, and the power supply voltage with 180 nm 3.3 V CMOS HSPICE device models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangik Choi ◽  
Jaemin Son ◽  
Kyoungah Cho ◽  
Sangsig Kim

AbstractIn this study, we fabricated a 2 × 2 one-transistor static random-access memory (1T-SRAM) cell array comprising single-gated feedback field-effect transistors and examined their operation and memory characteristics. The individual 1T-SRAM cell had a retention time of over 900 s, nondestructive reading characteristics of 10,000 s, and an endurance of 108 cycles. The standby power of the individual 1T-SRAM cell was estimated to be 0.7 pW for holding the “0” state and 6 nW for holding the “1” state. For a selected cell in the 2 × 2 1T-SRAM cell array, nondestructive reading of the memory was conducted without any disturbance in the half-selected cells. This immunity to disturbances validated the reliability of the 1T-SRAM cell array.


Sign in / Sign up

Export Citation Format

Share Document