New Discrete Chaotic Multiplicative Maps Based on the Logistic Map

2018 ◽  
Vol 28 (09) ◽  
pp. 1850118
Author(s):  
Dorota Aniszewska

Chaos is a phenomenon which cannot be predicted if it manifests itself in a nonlinear system. Simple deterministic models, such as the logistic map [Formula: see text], are constructed to capture the essence of processes observed in nature. They are interesting also from a mathematical point of view: nonlinear models can behave in chaotic and complicated ways. The logistic map is the simplest mathematical model exhibiting chaotic behavior. Therefore, its dynamical properties, stable points and stable cycles are well known and widely described. In this paper, the properties of multiplicative calculus were employed to transform the classical logistic map into multiplicative ones. The multiplicative logistic maps were tested for chaotic behavior. The Lyapunov exponents together with the bifurcation diagrams are given.

2022 ◽  
Vol 19 (3) ◽  
pp. 2489-2505
Author(s):  
Amit Kumar ◽  
◽  
Jehad Alzabut ◽  
Sudesh Kumari ◽  
Mamta Rani ◽  
...  

<abstract><p>In this paper, a novel one dimensional chaotic map $ K(x) = \frac{\mu x(1\, -x)}{1+ x} $, $ x\in [0, 1], \mu &gt; 0 $ is proposed. Some dynamical properties including fixed points, attracting points, repelling points, stability and chaotic behavior of this map are analyzed. To prove the main result, various dynamical techniques like cobweb representation, bifurcation diagrams, maximal Lyapunov exponent, and time series analysis are adopted. Further, the entropy and probability distribution of this newly introduced map are computed which are compared with traditional one-dimensional chaotic logistic map. Moreover, with the help of bifurcation diagrams, we prove that the range of stability and chaos of this map is larger than that of existing one dimensional logistic map. Therefore, this map might be used to achieve better results in all the fields where logistic map has been used so far.</p></abstract>


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3122
Author(s):  
Shah Hussain ◽  
Elissa Nadia Madi ◽  
Hasib Khan ◽  
Sina Etemad ◽  
Shahram Rezapour ◽  
...  

In this article, we propose a novel mathematical model for the spread of COVID-19 involving environmental white noise. The new stochastic model was studied for the existence and persistence of the disease, as well as the extinction of the disease. We noticed that the existence and extinction of the disease are dependent on R0 (the reproduction number). Then, a numerical scheme was developed for the computational analysis of the model; with the existing values of the parameters in the literature, we obtained the related simulations, which gave us more realistic numerical data for the future prediction. The mentioned stochastic model was analyzed for different values of σ1,σ2 and β1,β2, and both the stochastic and the deterministic models were compared for the future prediction of the spread of COVID-19.


2017 ◽  
Vol 992 (4) ◽  
pp. 32-38 ◽  
Author(s):  
E.G. Voronin

The article opens a cycle of three consecutive publications dedicated to the phenomenon of the displacement of the same points in overlapping scans obtained adjacent CCD matrices with opto-electronic imagery. This phenomenon was noticed by other authors, but the proposed explanation for the origin of displacements and the resulting estimates are insufficient, and developed their solutions seem controversial from the point of view of recovery of the measuring accuracy of opticalelectronic space images, determined by the physical laws of their formation. In the first article the mathematical modeling of the expected displacements based on the design features of a scanning opto-electronic imaging equipment. It is shown that actual bias cannot be forecast, because they include additional terms, which may be gross, systematic and random values. The proposed algorithm for computing the most probable values of the additional displacement and ways to address some of the systematic components of these displacements in a mathematical model of optical-electronic remote sensing.


2016 ◽  
Vol 26 (4) ◽  
pp. 803-813 ◽  
Author(s):  
Carine Jauberthie ◽  
Louise Travé-MassuyèEs ◽  
Nathalie Verdière

Abstract Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 474 ◽  
Author(s):  
Lazaros Moysis ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jesus M. Munoz-Pacheco ◽  
Jacques Kengne ◽  
...  

A modification of the classic logistic map is proposed, using fuzzy triangular numbers. The resulting map is analysed through its Lyapunov exponent (LE) and bifurcation diagrams. It shows higher complexity compared to the classic logistic map and showcases phenomena, like antimonotonicity and crisis. The map is then applied to the problem of pseudo random bit generation, using a simple rule to generate the bit sequence. The resulting random bit generator (RBG) successfully passes the National Institute of Standards and Technology (NIST) statistical tests, and it is then successfully applied to the problem of image encryption.


1998 ◽  
Vol 2 (3) ◽  
pp. 167-172
Author(s):  
I. V. Feldstein ◽  
N. N. Kuzmin

The paper presents an approach to the simulation of friction interaction. The model does not use any physical descriptions of the processes in the system, but it has simple physical interpretation. It is based on one qualitative experimental result – the value of first Lyapunov exponent drops with normal load. It is shown that the logistic map could be considered as the simplest model of continuous contact. The generalization of the model (which takes into account the discreteness of the real contact) gives results very similar to the experimental ones. It is in the form of a dynamic ensemble with variable structure (DEVS), which has some interesting properties – particularly bifurcation diagrams.


2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.


1995 ◽  
Vol 61 (587) ◽  
pp. 3108-3115
Author(s):  
Keijin Sato ◽  
Sumio Yamamoto ◽  
Kazutaka Yokota ◽  
Toshihiro Aoki ◽  
Shu Karube

1998 ◽  
Vol 12 (29n31) ◽  
pp. 3063-3073 ◽  
Author(s):  
Leonid Berlyand

We consider a mathematical model which describes an ideal superfluid with a large number of thin insulating rods and an ideal superconductor reinforced by such rods. We suggest a homogenization procedure for calculating effective properties of both composite media. From the numerical point of view the procedure amounts to solving a linear problem in a periodicity cell of unit size.


2018 ◽  
Vol 28 (09) ◽  
pp. 1850113 ◽  
Author(s):  
Maysam Fathizadeh ◽  
Sajjad Taghvaei ◽  
Hossein Mohammadi

Human walking is an action with low energy consumption. Passive walking models (PWMs) can present this intrinsic characteristic. Simplicity in the biped helps to decrease the energy loss of the system. On the other hand, sufficient parts should be considered to increase the similarity of the model’s behavior to the original action. In this paper, the dynamic model for passive walking biped with unidirectional fixed flat soles of the feet is presented, which consists of two inverted pendulums with L-shaped bodies. This model can capture the effects of sole foot in walking. By adding the sole foot, the number of phases of a gait increases to two. The nonlinear dynamic models for each phase and the transition rules are determined, and the stable and unstable periodic motions are calculated. The stability situations are obtained for different conditions of walking. Finally, the bifurcation diagrams are presented for studying the effects of the sole foot. Poincaré section, Lyapunov exponents, and bifurcation diagrams are used to analyze stability and chaotic behavior. Simulation results indicate that the sole foot has such a significant impression on the dynamic behavior of the system that it should be considered in the simple PWMs.


Sign in / Sign up

Export Citation Format

Share Document