scholarly journals The Future of Direct Cardiac Reprogramming: Any GMT Cocktail Variety?

2020 ◽  
Vol 21 (21) ◽  
pp. 7950
Author(s):  
Leyre López-Muneta ◽  
Josu Miranda-Arrubla ◽  
Xonia Carvajal-Vergara

Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 2208-2221 ◽  
Author(s):  
Maria Schindler ◽  
Sünje Fischer ◽  
René Thieme ◽  
Bernd Fischer ◽  
Anne Navarrete Santos

Abstract The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ± 59.3 pg/mL vs normoinsulinaemic 143.9 ± 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers.


2019 ◽  
Author(s):  
Marcel Schubert ◽  
Lewis Woolfson ◽  
Isla RM Barnard ◽  
Andrew Morton ◽  
Becky Casement ◽  
...  

AbstractCardiac regeneration and stem cell therapies depend critically on the ability to locally resolve the contractile properties of heart tissue1,2. Current regeneration approaches explore the growth of cardiac tissue in vitro and the injection of stem cell-derived cardiomyocytes3–6 (CMs) but scientists struggle with low engraftment rates and marginal mechanical improvements, leaving the estimated 26 million patients suffering from heart failure worldwide without effective therapy7–9. One impediment to further progress is the limited ability to functionally monitor injected cells as currently available techniques and probes lack speed and sensitivity as well as single cell specificity. Here, we introduce microscopic whispering gallery mode (WGM) lasers into beating cardiomyocytes to realize all-optical recording of transient cardiac contraction profiles with cellular resolution. The brilliant emission and high spectral sensitivity of microlasers to local changes in refractive index enable long-term tracking of individual cardiac cells, monitoring of drug administration, and accurate measurements of organ scale contractility in live zebrafish. Our study reveals changes in sarcomeric protein density as underlying factor to cardiac contraction which is of fundamental importance for understanding the mechano-biology of cardiac muscle activation. The ability to non-invasively assess functional properties of transplanted cells and engineered cardiac tissue will stimulate the development of novel translational approaches and the in vivo monitoring of physiological parameters more broadly. Likewise, the use of implanted microlasers as cardiac sensors is poised to inspire the adaptation of the most advanced optical tools known to the microresonator community, like quantum-enhanced single-molecule biosensing or frequency comb spectroscopy10.


2012 ◽  
Vol 23 (18) ◽  
pp. 3511-3521 ◽  
Author(s):  
Ryuga Ishii ◽  
Daisuke Kami ◽  
Masashi Toyoda ◽  
Hatsune Makino ◽  
Satoshi Gojo ◽  
...  

Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. We hypothesized that combinatorial expression of chondrocyte-specific transcription factors could directly convert human placental cells into chondrocytes. Starting from a pool of candidate genes, we identified a combination of only five genes (5F pool)—BCL6, T (also called BRACHYURY), c-MYC, MITF, and BAF60C (also called SMARCD3)—that rapidly and efficiently convert postnatal human chorion and decidual cells into chondrocytes. The cells generated expressed multiple cartilage-specific genes, such as Collagen type II α1, LINK PROTEIN-1, and AGGRECAN, and exhibited characteristics of cartilage both in vivo and in vitro. Expression of the endogenous genes for T and MITF was initiated, implying that the cell conversion is due to not only the forced expression of the transgenes, but also to cellular reprogramming by the transgenes. This direct conversion system from noncartilage tissue to cartilaginous tissue is a substantial advance toward understanding cartilage development, cell-based therapy, and oncogenesis of chondrocytes.


2020 ◽  
Author(s):  
Younghoon Jang ◽  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Nhien Tran ◽  
Oksana Gavrilova ◽  
...  

MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro but its role in adipose development and expansion in vivo has not been reported. Here we report that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of de novo lipogenesis (DNL) genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of DNL genes by facilitating lipogenic TF ChREBP-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.


2020 ◽  
Author(s):  
Shahan Mamoor

Unraveling the host transcriptional response to viral infections is important for understanding host-pathogen interactions. We mined published microarray datasets (1-5) to identify conserved and specific differentially expressed genes in in vitro and in vivo models of coronavirus infections. We found significant transcriptional induction of the transcription factors BATF2 and FOXJ1 in Middle East Respiratory Syndrome (MERS) coronavirus infection in human cells in vitro; BATF2 was also differentially expressed in the lungs of mice infected with the Severe Acute Respiratory Syndrome (SARS) coronavirus 1 (SARS-CoV-1) but not in human cells infected with the human coronavirus HCoV-229E. These data highlight specific host induction of transcription factors by different members of the coronavirus family.


1982 ◽  
Vol 60 (12) ◽  
pp. 1636-1642 ◽  
Author(s):  
Joseph J. Lynch ◽  
Ralf G. Rahwan ◽  
Richard J. Brumbaugh ◽  
Donald T. Witiak

The 2-n-propyl- and 2-n-butyl-3-dimethylamino-5, 6-methylenedioxyindene hydrochlorides are intracellular calcium antagonists with coronary dilating and antiarrhythmic effects against ouabain- and calcium-induced arrhythmias. In the present study, pretreatment with these tertiary methylenedioxyindenes afforded significant protection against the calcium-dependent arrhythmias induced by chloroform in mice. On the other hand, their antiarrhythmic activity against aconitine- and metha-choline-induced arrhythmias in rats (in which calcium does not play a primary etiological role) was suggestive but not impressive. The quaternary derivative, 2-n-butyl-5, 6-methylenedioxy-3-trimethylammonium iodide, which was synthesized with the expectation of being devoid of antiarrhythmic activity owing to its exclusion from the intracellular compartment, unexpectedly demonstrated greater antiarrhythmic potency than the tertiary analogues against calcium-induced arrhythmias in rats and chloroform-induced arrhythmias in mice. Like the tertiary methylenedioxyindenes, the protective activity of the quaternary analogue against arrhythmias induced by aconitine or by methacholine in rats was suggestive but not impressive. Because of the relative inactivity of the quaternary methylenedioxyindene in vitro, it is proposed that its in vivo activity may be due either to metabolic activation or to concentration in cardiac tissue in sufficient quantity to allow diffusion into cardiac cells down a concentration gradient or to alter membrane electrophysiological properties to the extent of exerting antiarrhythmic activity.


Author(s):  
Hong Zhao ◽  
Yi Zhang ◽  
Xiaochan Xu ◽  
Qiushi Sun ◽  
Chunyan Yang ◽  
...  

Direct conversion of fibroblasts into induced cardiomyocytes (iCMs) holds promising potential to generate functional cardiomyocytes for drug development and clinical applications, especially for direct in situ heart regeneration by delivery of reprogramming genes into adult cardiac fibroblasts in injured hearts. For a decade, many cocktails of transcription factors have been developed to generate iCMs from fibroblasts of different tissues in vitro and some were applied in vivo. Here, we aimed to develop genetic cocktails that induce cardiac reprogramming directly in cultured cardiac fibroblasts isolated from adult mice with myocardial infarction (MICFs), which could be more relevant to heart diseases. We found that the widely used genetic cocktail, Gata4, Mef2c, and Tbx5 (GMT) were inefficient in reprogramming cardiomyocytes from MICFs. In a whole well of a 12-well plate, less than 10 mCherry+ cells (<0.1%) were observed after 2 weeks of GMT infection with Myh6-reporter transgenic MICFs. By screening 22 candidate transcription factors predicted through analyzing the gene regulatory network of cardiac development, we found that five factors, GMTMS (GMT plus Myocd and Sall4), induced more iCMs expressing the cardiac structural proteins cTnT and cTnI at a frequency of about 22.5 ± 2.7% of the transduced MICFs at day 21 post infection. What is more, GMTMS induced abundant beating cardiomyocytes at day 28 post infection. Specifically, Myocd contributed mainly to inducing the expression of cardiac proteins, while Sall4 accounted for the induction of functional properties, such as contractility. RNA-seq analysis of the iCMs at day 28 post infection revealed that they were reprogrammed to adopt a cardiomyocyte-like gene expression profile. Overall, we show here that Sall4 and Myocd play important roles in cardiac reprogramming from MICFs, providing a cocktail of genetic factors that have potential for further applications in in vivo cardiac reprogramming.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 925
Author(s):  
Yongjun Jang ◽  
Yongdoo Park ◽  
Jongseong Kim

The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Sign in / Sign up

Export Citation Format

Share Document