scholarly journals Simulation study of the plasma-brake effect

2014 ◽  
Vol 32 (10) ◽  
pp. 1207-1216 ◽  
Author(s):  
P. Janhunen

Abstract. Plasma brake is a thin, negatively biased tether that has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma-brake tether by a high-performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic-field orientation and plasma-ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar (i.e. smooth and not turbulent) when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case in which the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also correct an error in an earlier reference. According to the simulations, the predicted thrust of the plasma brake is large enough to make the method promising for low-Earth-orbit (LEO) satellite deorbiting. As a numerical example, we estimate that a 5 km long plasma-brake tether weighing 0.055 kg could produce 0.43 mN breaking force, which is enough to reduce the orbital altitude of a 260 kg object mass by 100 km over 1 year.

2020 ◽  
Author(s):  
Karl Laundal ◽  
Jesper Gjerloev ◽  
Sam Yee ◽  
Slava Merkin ◽  
Heikki Vanhamäki ◽  
...  

<p>The auroral electrojet is traditionally measured remotely with magnetometers on ground or in low Earth orbit. The long distance, more than 100 km, means that smaller scale sizes are not detected. Because of this, the spatiotemporal characteristics of the electrojet are not known. Recent advances in measurement technology give hope of remote detections of the magnetic field in the mesosphere, very close to the electrojet. We present a prediction of the magnitude of these disturbances, inferred from the spatiotemporal characteristics of magnetic field-aligned currents. We also discuss how a constellation of small satellites carrying the Microwave Electrojet Magnetogram (MEM) instrument (Yee et al., 2020), could be used to essentially image the equivalent current at unprecedented spatial resolution. </p>


2016 ◽  
Vol 62 (11) ◽  
pp. 944-952 ◽  
Author(s):  
Lotfi Mhamdi ◽  
Nejib Mhamdi ◽  
Naceur Mhamdi ◽  
Philippe Lejeune ◽  
Nicole Jaffrezic ◽  
...  

This preliminary study focused on the effect of exposure to 0.5 T static magnetic fields on Escherichia coli adhesion and orientation. We investigated the difference in bacterial adhesion on the surface of glass and indium tin oxide-coated glass when exposed to a magnetic field either perpendicular or parallel to the adhesion surface (vectors of magnetic induction are perpendicular or parallel to the adhesion surface, respectively). Control cultures were simultaneously grown under identical conditions but without exposure to the magnetic field. We observed a decrease in cell adhesion after exposure to the magnetic field. Orientation of bacteria cells was affected after exposure to a parallel magnetic field. On the other hand, no effect on the orientation of bacteria cells was observed after exposure to a perpendicular magnetic field.


2018 ◽  
Vol 16 (6) ◽  
pp. 385-390
Author(s):  
Shikha BINWAL ◽  
Jay K JOSHI ◽  
Shantanu Kumar KARKARI ◽  
Predhiman Krishan KAW ◽  
Lekha NAIR ◽  
...  

A floating emissive probe has been used to obtain the spatial electron temperature (Te) profile in a 13.56 MHz parallel plate capacitive coupled plasma. The effect of an external transverse magnetic field and pressure on the electron temperature profile has been discussed. In the un-magnetised case, the bulk region of the plasma has a uniform Te. Upon application of the magnetic field, the Te profile becomes non-uniform and skewed.  With increase in pressure, there is an overall reduction in electron temperature. The regions adjacent to the electrodes witnessed a higher temperature than the bulk for both cases. The emissive probe results have also been compared with particle-in-cell simulation results for the un-magnetised case.


2021 ◽  
Vol 923 (2) ◽  
pp. 208
Author(s):  
Siddhartha Gupta ◽  
Damiano Caprioli ◽  
Colby C. Haggerty

Abstract A strong super-Alfvénic drift of energetic particles (or cosmic rays) in a magnetized plasma can amplify the magnetic field significantly through nonresonant streaming instability (NRSI). While the traditional analysis is done for an ion current, here we use kinetic particle-in-cell simulations to study how the NRSI behaves when it is driven by electrons or by a mixture of electrons and positrons. In particular, we characterize the growth rate, spectrum, and helicity of the unstable modes, as well the level of the magnetic field at saturation. Our results are potentially relevant for several space/astrophysical environments (e.g., electron strahl in the solar wind, at oblique nonrelativistic shocks, around pulsar wind nebulae), and also in laboratory experiments.


2015 ◽  
Vol 17 (4) ◽  
pp. 288-293 ◽  
Author(s):  
Daotan Tang ◽  
Shengsheng Yang ◽  
Kuohai Zheng ◽  
Xiaogang Qin ◽  
Detian Li ◽  
...  

2014 ◽  
Vol 32 (10) ◽  
pp. 1247-1261 ◽  
Author(s):  
L. Turc ◽  
D. Fontaine ◽  
P. Savoini ◽  
E. K. J. Kilpua

Abstract. Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere.


1994 ◽  
Vol 21 (24) ◽  
pp. 2761-2764 ◽  
Author(s):  
F. V. Coroniti ◽  
E. W. Greenstadt ◽  
S. L. Moses ◽  
B. T. Tsurutani ◽  
E. J. Smith

1990 ◽  
Vol 140 ◽  
pp. 79-80
Author(s):  
M. F. Bietenholz ◽  
P. P. Kronberg

We present and describe recent radio observations of the Crab Nebula, which allow us to determine the magnetic field orientation and depolarization at unprecedented resolution. The observations were made in 1987-1988 using all four configurations of the VLA, at 1410,1515,4625, and 4885 MHz. The resulting maps were all convolved with a clean beam of 1.8″ × 2.0″, elongated in P.A. 80°, and the residuals added back in.


Sign in / Sign up

Export Citation Format

Share Document