scholarly journals DE SITTER COSMOLOGY FROM GAUSS–BONNET DARK ENERGY WITH QUANTUM EFFECTS

2008 ◽  
Vol 17 (11) ◽  
pp. 2159-2170 ◽  
Author(s):  
EMILIO ELIZALDE ◽  
JOHN QUIROGA HURTADO ◽  
HÉCTOR IVÁN ARCOS

A Gauss–Bonnet dark energy model is considered. It is inspired by string/M-theory and also takes into account quantum contributions, which are introduced from a conformal quantum anomaly. The corresponding solutions for the Hubble rate, H, are studied starting from the Friedmann–Robertson–Walker equation. It is seen that, as a pure effect of the quantum contributions, a new solution for H exists in some region, which does not appear in the classical case. The behavior of all encountered solutions is studied with care, in particular the role played by the quantum correction term — which depends on the number of matter fields — in the stability of the solutions around its asymptotic value. It is argued that, contrary to what happens in the classical case, quantum effects remarkably lead to the realization of a de Sitter stage which corresponds to the inflation/dark energy stages, even for positive values of the f0 constant (coupling of the field with the Gauss–Bonnet invariant).

2002 ◽  
Vol 17 (10) ◽  
pp. 1413-1433 ◽  
Author(s):  
GORAN S. DJORDJEVIĆ ◽  
BRANKO DRAGOVICH ◽  
LJUBIŠA D. NEŠIĆ ◽  
IGOR V. VOLOVICH

We consider the formulation and some elaboration of p-adic and adelic quantum cosmology. The adelic generalization of the Hartle–Hawking proposal does not work in models with matter fields. p-adic and adelic minisuperspace quantum cosmology is well defined as an ordinary application of p-adic and adelic quantum mechanics. It is illustrated by a few cosmological models in one, two and three minisuperspace dimensions. As a result of p-adic quantum effects and the adelic approach, these models exhibit some discreteness of the minisuperspace and cosmological constant. In particular, discreteness of the de Sitter space and its cosmological constant is emphasized.


2016 ◽  
Vol 94 (2) ◽  
pp. 201-208 ◽  
Author(s):  
V. Fayaz ◽  
H. Hossienkhani ◽  
A. Pasqua ◽  
Z. Zarei ◽  
M. Ganji

In this paper, we consider the generalized ghost dark energy in a Bianchi type-I metric (which is a spatially homogeneous and anisotropic) in the framework of Brans–Dicke theory. For this purpose, we use the squared sound speed [Formula: see text] the sign of which determines the stability of the model. At first, we obtain the equation of state parameter, ωΛ = pΛ/ρΛ, the deceleration parameter q and the evolution equation of the generalized ghost dark energy. We find that, in this case, ωΛ cannot cross the phantom line (ωΛ > –1) and eventually the universe approaches a de-Sitter phase of expansion (ωΛ → –1). Then, we extend our study to the case of generalized ghost dark energy in a non-isotropic and Brans–Dicke framework and find out that the transition of ωΛ to the phantom regime can be more easily accounted for than when it is restored into the Einstein field equations. In conclusion, we find evidence that the generalized ghost dark energy in BD theory can lead to a stable universe favored by observations at the present time.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650102 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
Emmanuel N. Saridakis

We investigate the cosmological implications of a new class of modified gravity, where the field equations generically include higher-order derivatives of the matter fields, arising from the introduction of non-dynamical auxiliary fields in the action. Imposing a flat, homogeneous and isotropic geometry, we extract the Friedmann equations, obtaining an effective dark-energy sector containing higher-derivatives of the matter energy density and pressure. For the cases of dust, radiation and stiff matter, we analyze the cosmological behavior, finding accelerating, de Sitter and non-accelerating phases, dominated by matter or dark-energy. Additionally, the effective dark-energy equation-of-state parameter can be quintessence-like, cosmological-constant-like or even phantom-like. The detailed study of these scenarios may provide signatures, that could distinguish them from other candidates of modified gravity.


Author(s):  
Leonid Marochnik

In this three-part paper, we show that gravitational waves (classical and quantum) produce the accelerated de Sitter expansion at the start and by the end of the cosmological evolution of the Universe. In these periods of time, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e. it is filled with classical gravitational waves and gravitons. In such gravitational wave and graviton dominated eras of evolution of the Universe, the de Sitter state is the exact solution to the self-consistent equations for gravitational waves and gravitons and background geometry for the empty (with no matter fields) space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained by Wick rotation with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves and gravitons provides a transparent physical explanation to the coincidence and threshold paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from gravitons/gravitational waves at the start of the Universe evolution produces inflation which is consistent with the observational data on CMB anisotropy.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Ayman A. Aly

Based on Tsallis holographic dark energy model recently proposed by using the general model of the Tsallis entropy expression, we reconstruct cosmographic parameters, q,j,κ,l, and we study their evolution in spatially flat (n+1)-dimensional Friedmann-Robertson-Walker universe using Granda-Oliveros scale. Our results show that the universe is in an accelerating expansion mode described by phantom-like behavior. We go further and study the state finder operators and the Om diagnostic to understand the behavior of our model. The stability of the system is also studied by using the square of speed of sound showing that our model is stable over the low range of red-shift considered. The results indicate that the entropy formalism will play an important role in understanding the dynamics of our universe.


Author(s):  
Leonid Marochnik

In this three-part paper, we show that gravitational waves (classical and quantum) produce the accelerated de Sitter expansion at the start and by the end of the cosmological evolution of the Universe. In these periods of time, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e. it is filled with classical gravitational waves and gravitons. In such gravitational wave and graviton dominated eras of evolution of the Universe, the de Sitter state is the exact solution to the self-consistent equations for gravitational waves and gravitons and background geometry for the empty (with no matter fields) space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained by Wick rotation with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves and gravitons provides a transparent physical explanation to the coincidence and threshold paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from gravitons/gravitational waves at the start of the Universe evolution produces inflation which is consistent with the observational data on CMB anisotropy.


2007 ◽  
Vol 16 (05) ◽  
pp. 817-825 ◽  
Author(s):  
IVER BREVIK ◽  
JOHN QUIROGA

We consider dark energy cosmology in a de Sitter universe filled with quantum conformal matter. Our model represents a Gauss–Bonnet model of gravity with contributions from quantum effects. To the General Relativity action an arbitrary function of the GB invariant, f(G), is added, and taking into account quantum effects from matter the cosmological constant is studied. For the considered model, the conditions for a vanishing cosmological constant are considered. Creation of a de Sitter universe by quantum effects in a GB modified gravity is discussed.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050075
Author(s):  
Nasr Ahmed ◽  
Kazuharu Bamba ◽  
F. Salama

In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.


2013 ◽  
Vol 554 ◽  
pp. A60 ◽  
Author(s):  
A. Dupays ◽  
B. Lamine ◽  
A. Blanchard

Sign in / Sign up

Export Citation Format

Share Document