scholarly journals Perspectives of perihelion precession in torsion modified gravity

2020 ◽  
Vol 29 (10) ◽  
pp. 2050074
Author(s):  
R. Nitish ◽  
Rohit K. Gupta ◽  
Supriya Kar

Killing symmetries are revisited in [Formula: see text] bulk geometric torsion (GT) perturbation theory to investigate the perihelion precession. Computation reveals a nonperturbative (NP) modification to the precession known in General Relativity (GR). Remarkably the analysis reassures our proposed holographic correspondence between a perturbative GT in bulk and a boundary GR coupled to [Formula: see text]. In fact, the topological correction is sourced by a non-Newtonian potential in GR and we identify it with an “electro-gravito” (EG) dipole. Interestingly, the dipole correction is shown to possess its origin in a [Formula: see text]-form underlying a propagating GT and leads to a NP gravity in [Formula: see text].

Author(s):  
Edmund Bertschinger

The metric of a perturbed Robertson–Walker space–time is characterized by three functions: a scale-factor giving the expansion history and two potentials that generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity, but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the integrated Sachs–Wolfe effect with galaxy peculiar velocities or clustering.


2020 ◽  
Vol 29 (02) ◽  
pp. 2050019
Author(s):  
Rohit K. Gupta ◽  
Supriya Kar ◽  
R. Nitish

A geometric torsion (GT) underlying a [Formula: see text]-form in a [Formula: see text]-dimensional [Formula: see text] gauge theory is revisited with a renewed perspective for a nonperturbation (NP) gravity in [Formula: see text]. In this context, we provide evidences to a holographic correspondence between a bulk GT and a boundary NP gravity. Interestingly the Killing symmetries in General Relativity (GR) are shown to provide a subtle clue to the quantum gravity. The NP gravity is shown to incorporate a [Formula: see text] coupling, sourced by a non-Newtonian potential, to an exact geometry in GR. Remarkably the NP correction is identified as a mass dipole and is shown to be sourced by a propagating GT. A detailed analysis is performed in a bulk GT to show a modification to the precession of perihelion in a boundary NP gravity. The perspective of an electromagnetic (EM) wave in the bulk is investigated to reveal a spin [Formula: see text] (mass-less) quantum sourced by an apparent 2-form. A Goldstone scalar is absorbed by the apparent 2-form to describe a massive [Formula: see text]-form in the coulomb gauge. Alternately a Goldstone scalar together with a local degree of GT and 2-form is argued to govern a composite (mass-less) spin [Formula: see text] particle in Lorentz gauge. Both the scenarios, further ensure a graviton in a boundary NP gravity. A qualitative analysis reveals a (noninteracting) graviton underlying a plausible gravitational wave/particle duality in NP gravity.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050068 ◽  
Author(s):  
Gauranga C. Samanta ◽  
Nisha Godani ◽  
Kazuharu Bamba

We have proposed a novel shape function on which the metric that models traversable wormholes is dependent. Using this shape function, the energy conditions, equation-of-state and anisotropy parameter are analyzed in [Formula: see text] gravity, [Formula: see text] gravity and general relativity. Furthermore, the consequences obtained with respect to these theories are compared. In addition, the existence of wormhole geometries is investigated.


2010 ◽  
Vol 25 (27) ◽  
pp. 2325-2332 ◽  
Author(s):  
PUXUN WU ◽  
HONGWEI YU

The f(G) gravity is a theory to modify the general relativity and it can explain the present cosmic accelerating expansion without the need of dark energy. In this paper the f(G) gravity is tested with the energy conditions. Using the Raychaudhuri equation along with the requirement that the gravity is attractive in the FRW background, we obtain the bounds on f(G) from the SEC and NEC. These bounds can also be found directly from the SEC and NEC within the general relativity context by the transformations: ρ → ρm + ρE and p → pm + pE, where ρE and pE are the effective energy density and pressure in the modified gravity. With these transformations, the constraints on f(G) from the WEC and DEC are obtained. Finally, we examine two concrete examples with WEC and obtain the allowed region of model parameters.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150060
Author(s):  
Spiros Cotsakis ◽  
Dimitrios Trachilis

We study the problem of the instability of inhomogeneous radiation universes in quadratic Lagrangian theories of gravity written as a system of evolution equations with constraints. We construct formal series expansions and show that the resulting solutions have a smaller number of arbitrary functions than that required in a general solution. These results continue to hold for more general polynomial extensions of general relativity.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Luca Buoninfante ◽  
Gaetano Lambiase ◽  
Luciano Petruzziello

AbstractIn this paper, we study the phenomenon of quantum interference in the presence of external gravitational fields described by alternative theories of gravity. We analyze both non-relativistic and relativistic effects induced by the underlying curved background on a superposed quantum system. In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm–Aharonov effect, which results in a phase shift proportional to the derivative of the modified Newtonian potential. On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial rôle. Indeed, the existence of a gravitational time dilation between the two arms of the interferometer causes a loss of coherence that is in principle observable in quantum interference patterns. We work in the context of generalized quadratic theories of gravity to compare their physical predictions with the analogous outcomes in general relativity. In so doing, we show that the decoherence rate strongly depends on the gravitational model under investigation, which means that this approach turns out to be a promising test bench to probe and discriminate among all the extensions of Einstein’s theory in future experiments.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950157 ◽  
Author(s):  
Tomohiro Inagaki ◽  
Yamato Matsuo ◽  
Hiroki Sakamoto

The logarithmic [Formula: see text]-corrected [Formula: see text] gravity is investigated as a prototype model of modified gravity theories with quantum corrections. By using the auxiliary field method, the model is described by the general relativity with a scalaron field. The scalaron field can be identified as an inflaton at the primordial inflation era. It is also one of the dark matter candidates in the dark energy (DE) era. It is found that a wide range of the parameters is consistent with the current observations of CMB fluctuations, DE and dark matter.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


2007 ◽  
Vol 22 (40) ◽  
pp. 3013-3026 ◽  
Author(s):  
KIRILL KRASNOV

We review the status of a certain (infinite) class of four-dimensional generally covariant gravity theories propagating two degrees of freedom that are formulated without any direct mention of the metric. General relativity itself (in its Plebański formulation) belongs to the class, so these theories are examples of modified gravity. We summarize the current understanding of the nature of the modification, of the renormalizability properties of these theories, of their coupling to matter fields, and describe some of their physical properties.


An investigation is started into a possible mathematical structure of the Wheeler-DeWitt superspace quantization of general relativity. The emphasis is placed throughout on quantum field theory aspects of the problem and topics discussed include canonical commutation relations in a triad basis, the status of the constraint equation and the rôle played by perturbation theory.


Sign in / Sign up

Export Citation Format

Share Document