scholarly journals The stability analysis of brane-induced gravity with quintessence field on the brane with a Gaussian potential

Author(s):  
A. Ravanpak ◽  
G. F. Fadakar

In this paper, we consider a normal branch of the DGP cosmological model with a quintessence scalar field on the brane as the dark energy component. Using the dynamical system approach, we study the stability properties of the model. We find that [Formula: see text], as one of our new dimensionless variables which is defined in terms of the quintessence potential, has a crucial role in the history of the universe. We divide our discussion into two parts: a constant [Formula: see text] and a varying [Formula: see text]. In the case of a constant [Formula: see text] we calculate all the critical points of the model even those at infinity and then assume all of them as instantaneous critical points in the varying [Formula: see text] situation which is the main part of this paper. We find that the effect of the extra dimension in such a model is independent of the value of [Formula: see text]. Then, we consider a Gaussian potential for which [Formula: see text] is not constant but varies from zero to infinity. We discuss the evolution of the dynamical variables of the model and conclude that their asymptotic behaviors follow the trajectories of the moving critical points. Also, we find two different possible fates for the universe. In one of them, it could experience an accelerated expansion, but then enters a decelerating phase and finally reaches a stable matter-dominated solution. In the other scenario, the universe could approach the matter-dominated critical point without experiencing any accelerated expansion. We argue that the first scenario is more compatible with observations.

2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


Universe ◽  
2019 ◽  
Vol 5 (8) ◽  
pp. 185
Author(s):  
Muhammad Sharif ◽  
Qanitah Ama-Tul-Mughani

In this paper, we study the phase space portrait of homogeneous and isotropic universe by taking different coupling functions between dark energy models and bulk viscous dark matter. The dimensionless quantities are introduced to establish an autonomous set of equations. To analyze the stability of the cosmos, we evaluate critical points and respective eigenvalues for different dynamical quantities. For bulk viscous matter and radiation in tachyon coupled field, these points show stable evolution when γ ≫ δ but accelerated expansion of the universe for δ > 1 9 . The stability of the universe increases for some stationary points which may correspond to the late-time expansion for the coupled phantom field.


2020 ◽  
Vol 17 (11) ◽  
pp. 2050158
Author(s):  
A. Y. Shaikh ◽  
B. Mishra

In this paper, we have investigated the stability of General Relativistic Hydrodynamics (GRHD) model in a Friedmann–Robertson–Walker space-time with the volumetric power law in teleparallel gravity. The basic equations are derived along with its thermodynamical aspects. Thermodynamic temperature and entropy density of the model are also obtained. The state finder diagnostic pair and jerk parameter are analyzed to characterize different phases of the universe and the well-known astrophysical phenomena such as look-back time, the luminosity distance with redshift are derived. The model shows an accelerated expansion with inflationary era in the early and the very late time of the cosmic evolution. The GRHD model is stable at the early phases of the universe and is unstable at late times.


2016 ◽  
Vol 31 (10) ◽  
pp. 1650061 ◽  
Author(s):  
M. Sharif ◽  
Ayesha Sarwar

In this paper, we study thermal stability of an exotic fluid known as generalized cosmic Chaplygin gas (GCCG). We evaluate different physical parameters and examine how this fluid describes accelerated expansion of the universe. The stability conditions are formulated from thermodynamics which indicate that the respective fluid is stable adiabatically but it cannot be checked under isothermal condition.


2020 ◽  
pp. 9-25
Author(s):  
S. F. Levin

A brief overview of the history of the origin and development of the cosmological distance scale based on redshift is given. Statistical aspects of the problem of calibration of scales of this type are considered and their analogy with the problems of calibration of measurement tools is shown. The analysis of the first data on the basis of which the “accelerated expansion of the Universe” was detected. The Consequences of Anisotropy for Distance Scale is analyzed.


2016 ◽  
Vol 94 (5) ◽  
pp. 458-465
Author(s):  
Yu Li

The entropic cosmology model is an alternative method to explain the accelerated expansion of the universe. In this paper, we discuss the dynamical system in two types of entropic cosmology model: Λ(t) type and bulk viscous type. We found that the stability properties of fixed points are affected by the H2 term, while the H term and constant term have no influence on stability properties of fixed points. We also found that the dynamical properties of the C-version model are the same as the H-version model.


2020 ◽  
Vol 98 (2) ◽  
pp. 210-216
Author(s):  
Zeinab Rezaei

Expansion dynamics of the Universe is an important subject in modern cosmology. The dark energy equation of state determines these dynamics so that the Universe is in an accelerating phase. However, dark matter (DM) can also affect the accelerated expansion of the Universe through its equation of state. In the present work, we explore the expansion dynamics of the Universe in the presence of DM pressure. In this regard, applying the DM equation of state from the observational data related to the rotational curves of galaxies, we calculate the evolution of DM density. Moreover, the Hubble parameter, history of scale factor, luminosity distance, and deceleration parameter are studied while the DM pressure is taken into account. Our results verify that the DM pressure leads to higher values of the Hubble parameter at each redshift and the expansion of the Universe grows due to the DM pressure.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050066
Author(s):  
Moulay-Hicham Belkacemi ◽  
Zahra Bouabdallaoui ◽  
Mariam Bouhmadi-López ◽  
Ahmed Errahmani ◽  
Taoufik Ouali

In this paper, we present a model for the late-time evolution of the universe where a dark energy-dark matter interaction is invoked. Dark energy is modeled through an holographic Ricci dark energy component. The model is embedded within an induced gravity braneworld model. For suitable choices of the interaction coupling, the big rip and little rip induced by the holographic Ricci dark energy, in a relativistic model and in an induced gravity braneworld model, are removed. In this scenario, the holographic dark energy will have a phantom like behavior even though the brane is asymptotically de Sitter.


2020 ◽  
Vol 18 (01) ◽  
pp. 2150014
Author(s):  
Shikha Srivastava ◽  
Umesh Kumar Sharma

In this work, we propose a non-interacting model of Barrow holographic dark energy (BHDE) using Barrow entropy in a spatially flat FLRW Universe considering the IR cutoff as the Hubble horizon. We study the evolutionary history of important cosmological parameters, in particular, deceleration parameter, equation of state (EoS) parameter, the BHDE and matter density parameter, and also observe satisfactory behaviors in the BHDE model. The stability of the BHDE model has been examined by squared sound speed [Formula: see text]. In addition, to describe the accelerated expansion of the Universe, the correspondence of the BHDE model with the quintessence scalar field has been reconstructed.


2017 ◽  
Vol 95 (11) ◽  
pp. 1068-1073 ◽  
Author(s):  
T. Mirzaei Rezaei ◽  
Alireza Amani

In this paper, the model of interaction is studied between f(T, [Formula: see text]) gravity and modified Chaplygin gas in Friedmann–Robertson–Walker (FRW)-flat metric. We obtain the Friedmann equations in the framework of teleparallel gravity by vierbein field. We consider that the Universe is dominated by components of cold matter, dark energy, and modified Chaplygin gas. In what follows we separately write the corresponding continuity equations for components of the Universe. Also, dark energy equation of state (EoS) and effective EoS are obtained with respect to redshift, thereinafter the corresponding cosmological parameters are plotted in terms of redshift, thereinafter the accelerated expansion of the Universe is investigated. Finally, the stability of the model is discussed in phase plane analysis.


Sign in / Sign up

Export Citation Format

Share Document