STATISTICS OF FRACTURE SURFACES

Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 1059-1067 ◽  
Author(s):  
J. PLANÈS ◽  
E. BOUCHAUD ◽  
G. LAPASSET

Experimental measurements of the roughness exponent ζ of some fracture surfaces are reported. Whatever the fracture mode, for unbranched (aluminium alloy) or branched (Ni3Al) surfaces, ζ is found quite close to 0.8, in accordance with other experimental determinations, but not with theoretical predictions of standard 3-d models. The complete height distribution for the complex branched structures is shown to slowly decrease with increasing altitude. It implies a power-law behavior for the low order moments which is experimentally recovered. Exponents reveal different from that of gaussian distributions.

2020 ◽  
Author(s):  
Steffen Abe ◽  
Hagen Deckert

<p>The roughness of fracture surfaces is important for a range of geological processes such as the mechanical behaviour of faults or the fluid flow in jointed rocks or fault zones. However, the processes and parameters controlling the details of the fracture roughness are not fully understood yet. We therefore use numerical simulations based on the Discrete Element Method (DEM) to study the formation of fractures in triaxial deformation experiments under a wide range of stress conditions and to quantify the geometric properties of the resulting fracture surfaces. In the numerical experiments a DEM-model of a box-shaped rock sample is subjected to a displacement controlled load along its x-axis while a defined confining stress is applied to the other surfaces.</p><p>Based on the data from 131 numerical simulations the roughness of 388 fracture surfaces has been analysed. For this purpose the surface point clouds extracted from the Discrete Element models have been converted to height fields relative to a "best-fit" plane and the height distributions quantified. The results show that the heights are normally distributed. We observe no dependence on the confining stress except that models with equal confining stress in y- and z-direction show a higher standard deviation of the height distribution than those with differing y- and z-confinement. An analysis of the height-height correlation functions for those surfaces shows that they follow a power-law, demonstrating that the surfaces are self-affine. The Hurst exponent H describing the scaling of the roughness can be derived from the power-law relation. Values obtained are in the range H=0.2-0.6 for the full suite of experiments, while the mean of the Hurst exponents for each group of fracture surfaces generated under the same stress conditions is H=0.3-0.45. A weak decreasing trend of the Hurst exponent with increasing confining stress can be observed, but contrary to the standard deviation of the height distribution there is no dependence on the ratio of the confining stresses. There is also no difference between fractures generated in tensile (mode 1) or compressive conditions (mode 2).</p><p>Additionally, surfaces of rock samples fractured in triaxial tests in the laboratory have been analysed using the same methods. The surfaces show similar self-affine characteristics as those in the numerical experiments, although with significantly higher Hurst exponents H=0.6-0.8.</p><p>A comparison between our numerical models and laboratory experiments and data obtained from literature shows that natural and lab-created fracture surfaces and their numerically modelled counterparts are similar regarding the normally distributed heights and the self-affine scale, but the Hurst exponents do not match exactly. While the majority of field and experimental studies find significantly higher Hurst exponents of about 0.8, there are some studies, for example on Sandstone, which find H=0.4-0.5, falling into the range observed in our numerical experiments.</p>


1971 ◽  
Vol 93 (3) ◽  
pp. 349-361 ◽  
Author(s):  
L. D. Wedeven ◽  
D. Evans ◽  
A. Cameron

Elastohydrodynamic oil film measurements for rolling point contact under starvation conditions are obtained using optical interferometry. The experimental measurements present a reasonably clear picture of the starvation phenomenon and are shown to agree with theoretical predictions. Starvation inhibits the generation of pressure and, therefore, reduces film thickness. It also causes the overall pressure, stress, and elastic deformation to become more Hertzian. Additional experiments using interferometry illustrate: the cavitation pattern, lubricant entrapment, grease lubrication, ball spin, and edge effects in line contact.


2021 ◽  
Vol 13 (21) ◽  
pp. 4369
Author(s):  
Daniel Duane ◽  
Chenyang Zhu ◽  
Felix Piavsky ◽  
Olav Rune Godø ◽  
Nicholas C. Makris

Attenuation from fish can reduce the intensity of acoustic signals and significantly decrease detection range for long-range passive sensing of manmade vehicles, geophysical phenomena, and vocalizing marine life. The effect of attenuation from herring shoals on the Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) of surface vessels is investigated here, where concurrent wide-area active Ocean Acoustic Waveguide Remote Sensing (OAWRS) is used to confirm that herring shoals occluding the propagation path are responsible for measured reductions in ship radiated sound and corresponding detection losses. Reductions in the intensity of ship-radiated sound are predicted using a formulation for acoustic attenuation through inhomogeneities in an ocean waveguide that has been previously shown to be consistent with experimental measurements of attenuation from fish in active OAWRS transmissions. The predictions of the waveguide attenuation formulation are in agreement with measured reductions from attenuation, where the position, size, and population density of the fish groups are characterized using OAWRS imagery as well as in situ echosounder measurements of the specific shoals occluding the propagation path. Experimental measurements of attenuation presented here confirm previous theoretical predictions that common heuristic formulations employing free space scattering assumptions can be in significant error. Waveguide scattering and propagation theory is found to be necessary for accurate predictions.


2002 ◽  
Vol 17 (6) ◽  
pp. 1276-1282 ◽  
Author(s):  
M. Hinojosa ◽  
J. Aldaco

The possible role of microstructural features in determining the self-affinity of the fracture surface of a cast aluminum alloy is explored in this work. Fracture surfaces generated both in tension and impact tests were topometrically analyzed by atomic force microscopy, scanning electron microscopy, and stylus profilometry. The roughness exponent exhibited the “universal” value ζ ≈ 0.78, and the correlation length ζ was of the order of the grain size. The brittle intermetallic compounds known to be important in crack initiation did not show any correlation with the self-affine parameters of the resulting fracture surfaces in this particular case.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Marcin Chybiński ◽  
Łukasz Polus ◽  
Maria Ratajczak ◽  
Piotr Sielicki

The present study focused on the behaviour of the AW-6060 aluminium alloy in peak temper condition T6 under a wide range of loads: tensile loading, projectile and explosion. The alloy is used as a structural component of civil engineering structures exposed to static or dynamic loads. Therefore, it was crucial to determine the material’s behaviour at low and intermediate rates of deformation. Despite the fact that the evaluation of the strain rate sensitivity of the AW-6060 aluminium alloy has already been discussed in literature, the authors of this paper wished to further investigate this topic. They conducted tensile tests and confirmed the thesis that the AW-6060 T6 aluminium alloy has low strain rate sensitivity at room temperature. In addition, the fracture surfaces subjected to different loading (tensile loading, projectile and explosion) were investigated and compared using a scanning electron microscope, because the authors of this paper were trying to develop a new methodology for predicting how samples had been loaded before failure occurred based on scanning electron microscopy (SEM) micrographs. Projectile and explosion tests were performed mainly for the SEM observation of the fracture surfaces. These tests were unconventional and they represent the originality of this research. It was found that the type of loading had an impact on the fracture surface.


Author(s):  
Lorna J. Ayton

The extended introduction in this paper reviews the theoretical modelling of leading- and trailing-edge noise, various bioinspired aerofoil adaptations to both the leading and trailing edges of blades, and how these adaptations aid in the reduction of aerofoil–turbulence interaction noise. Attention is given to the agreement between current theoretical predictions and experimental measurements, in particular, for turbulent interactions at the trailing edge of an aerofoil. Where there is a poor agreement between theoretical models and experimental data the features neglected from the theoretical models are discussed. Notably, it is known that theoretical predictions for porous trailing-edge adaptations do not agree well with experimental measurements. Previous works propose the reason for this: theoretical models do not account for surface roughness due to the porous material and thus omit a key noise source. The remainder of this paper, therefore, presents an analytical model, based upon the acoustic analogy, to predict the far-field noise due to a rough surface at the trailing edge of an aerofoil. Unlike previous roughness noise models which focus on roughness over an infinite wall, the model presented here includes diffraction by a sharp edge. The new results are seen to be in better agreement with experimental data than previous models which neglect diffraction by an edge. This new model could then be used to improve theoretical predictions for far-field noise generated by turbulent interactions with a (rough) porous trailing edge. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


1999 ◽  
Vol 578 ◽  
Author(s):  
E. Reyes ◽  
C. Guerrero ◽  
V. González ◽  
M. Hinojosa

AbstractThe self-aff'me behavior of fracture surfaces of polymeric materials was qualitatively and quantitatively studied. SEM images of fracture surfaces of both polypropylene and polystyrene show Chevron marks at several magnifications. In addition, for polystyrene the mirror and Hackle zones were also observed. For quantitative analysis, the average roughness exponent, ζ, of height profiles generated by AFM images, was estimated by applying the variable bandwidth method. Values of ζ=0.788 and ζ=0.810 were obtained for polypropylene and polystyrene, respectively. These results are in very good agreement with the claimed universal exponent of 0.8 reported in the literature for other non-polymeric materials. By choosing the AFM appropriate operating conditions, measurements of roughness on plastic material surfaces could be performed.


2020 ◽  
Vol 35 (15) ◽  
pp. 2050122
Author(s):  
H. R. Khan ◽  
E. H. Raslan ◽  
R. A. Reem

We present an analytic calculation of Branching Ratio (BR) and Charge-Parity (CP) violating asymmetries of the [Formula: see text] meson decays to [Formula: see text] by calculating the amplitude and the decay width of the process including the chiral loop and gluon condensate to first-order. We find the BR of [Formula: see text] which is in agreement with other experimental measurements and theoretical predictions. We also calculate the direct CP violation, CP violation in mixing and CP violation due to interference which are [Formula: see text], [Formula: see text] and [Formula: see text], respectively.


Sign in / Sign up

Export Citation Format

Share Document