Study of the Interface Characteristic of Be/HR-1 Stainless Steel Following Diffusion Bonding

2003 ◽  
Vol 10 (02n03) ◽  
pp. 331-336
Author(s):  
Peng-Cheng Zhang ◽  
Bin Bai ◽  
Jiang-Rong Yang ◽  
Jue-Sheng Zou ◽  
Shou-Qi Zhou

The interface structure of Be/HR-1 stainless steel (SS) joint following diffusion bonding was investigated. Metallurgical observation, electron scanning microscopy, X-ray diffraction and scanning Auger microspectroscopy were performed for basic evaluation of bonded joints. There are intermetallic compounds such as Be11Fe and Be12Cr in the interface region of Be/SS joints, which drastically reduce the mechanical strength of the joints. Cu, Ag and Al barriers can block effective inter-diffusion of Be and HR-1 stainless steel, then forming brittle phases.

2011 ◽  
Vol 314-316 ◽  
pp. 968-971
Author(s):  
Hui Li ◽  
Shang Qi Zhou ◽  
Ji Lan Kong

Be and HR-I stainless steel with AgCu28 as an interlayer was diffusion bonded by hot pressing,The microstructure,distribution of composition and phase,mechanical properties of the joints were analyzed using scanning electron microscopy(SEM),scanning auger microspectroy(SAM),x-ray diffraction(XRD) and material testing machine,and the relationship between composition and structure and properties,and the effect of interlayer materials AgCu28 alloy were also discussed.The results show that good joint can be obtained using AgCu28 alloy as an interlayer material,because it can reduce the mutual diffusion between beryllium and stainless steel elements,the formation of brittle intermetallic compounds between beryllium and stainless steel elements are avoided effectively to improve the diffusion bonding strength and properties.


2012 ◽  
Vol 490-495 ◽  
pp. 3486-3490
Author(s):  
Qiang Yu ◽  
Zhen Chen ◽  
Zhong Cheng Guo

In order to prepare a new type of anode material, stainless steel was selected as substrate material. The β-PbO2 coating on stainless steel substrate was prepared under the appropriate plating solution, and the PbO2-MnO2 coating was prepared with thermal decomposition. The crystal structure was determined by X-ray diffraction; Surface morphology was test by Scanning Electron Microscopy; the energy spectrum was used to determine element mass-fraction and the ratio of atomic number of the coatings.


2008 ◽  
Vol 373-374 ◽  
pp. 318-321
Author(s):  
J. Liang ◽  
M.K. Lei

Effects of stacking faults in a high nitrogen face-centered-cubic phase (γΝ) formed on plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel on peak shift and peak asymmetry of x-ray diffraction were investigated based on Warren’s theory and Wagner’s method, respectively. The peak shift from peak position of the γΝ phase is ascribed to the deformation faults density α, while the peak asymmetry of the γΝ phase is characterized by deviation of the center of gravity of a peak from the peak maximum (Δ C.G.) due to the twin faults density β. The calculated peak positions of x-ray diffraction patterns are consistent with that measured for plasma source ion nitrided 1Cr18Ni9Ti stainless steel.


1990 ◽  
Vol 208 ◽  
Author(s):  
Ichiro Hirosawa ◽  
Jun'ichiro Nizuki ◽  
Toru Tatsumi ◽  
Koichi Akimoto ◽  
Junji Matsui

ABSTRACTIn order to investigate the initial oxidation process Qf the Si (111) surface, we have studied the molecular beam deposited Si0 2/Si(111)-7×7 interface structure using grazing incidence X-ray diffraction geometry. We suggest a three-fold symmetry structural model composed of stacking fault layer, dimer layer and additional ordered atoms. The three-fold symmetry structure comes from the preference for oxidation in the faulted half of the 7×7 structure.


2015 ◽  
Vol 20 (1) ◽  
pp. 160-168 ◽  
Author(s):  
Fabiana Cristina Nascimento Borges ◽  
Willian Rafael de Oliveira ◽  
Jonas Kublitski

The superaustenitic stainless steel presents several technological applications, mainly in corrosive environments. The different phase precipitation might alter some of its mechanical properties. Such alterations affect several factors, including the working life of the material under adverse working conditions. In this study, Instrumented Indentation techniques, Tribology and X-ray diffraction (XRD) were used to evaluate alterations in regions close to the surface. The parameters analyzed were: hardness and elastic modulus (instrumented indentation), friction coefficient (tribology) and structural alterations of the unit cell of the identified phases (XRD - Rietveld Refinement). All properties analyzed were compared with those of common austenitic steel. The presence of σ-phase (space group P42mnm) and γ-austenite (space group Fm3m) were detected. Data analyzed indicated that the presence of σ-phase caused small alteration in properties such as hardness in regions close to the surface. In the regions farther from the surface (material bulk) data can be compared to that of conventional austenitic steel.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Xu ◽  
Wang ◽  
Chen ◽  
Qiao ◽  
Zhang ◽  
...  

The effect of rare earth oxides on the microstructure and corrosion behavior of laser-cladding coating on 316L stainless steel was investigated using hardness measurements, a polarization curve, electrochemical impedance spectroscopy (EIS), a salt spray test, X-ray diffraction, optical microscopy, and scanning electron microscopy (SEM). The results showed that the modification of rare earth oxides on the laser-cladding layer caused minor changes to its composition but refined the grains, leading to an increase in hardness. Electrochemical and salt spray studies indicated that the corrosion resistance of the 316L stainless steel could be improved by laser cladding, especially when rare earth oxides (i.e., CeO2 and La2O3) were added as a modifier.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 984
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

An X-ray diffraction investigation was carried out on nitrogen-containing 304 stainless steel thin films deposited by reactive rf magnetron sputtering over a range of substrate temperature and bias levels. The resulting films contained between ~28 and 32 at.% nitrogen. X-ray analysis was carried out using both the standard Bragg-Brentano method as well as area-detector diffractometry analysis. The extent of the diffraction anomaly ((002) peak shift) was determined using a calculated parameter, denoted RB, which is based on the (111) and (002) peak positions. The normal value for RB for FCC-based structures is 0.75 but increases as the (002) peak is anomalously displaced closer to the (111) peak. In this study, the RB values for the deposited films were found to increase with substrate bias but decrease with substrate temperature (but still always >0.75). Using area detector diffractometry, we were able to measure d111/d002 values for similarly oriented grains within the films, and using these values calculate c/a ratios based on a tetragonal-structure model. These results allowed prediction of the (002)/(200) peak split for tetragonal structures. Despite predicting a reasonably accessible split (~0.6°–2.9°–2θ), no peak splitting observed, negating the tetragonal-structure hypothesis. Based on the effects of film bias/temperature on RB values, a defect-based hypothesis is more viable as an explanation for the diffraction anomaly.


Sign in / Sign up

Export Citation Format

Share Document