EFFECT OF IONIC SIZES OF HALIDE ANIONS OF POTASSIUM SALTS ON SURFACE AND INTERFACIAL TENSIONS OF BENZENE AND WATER INTERFACES FOR MUTUAL MIXING

2009 ◽  
Vol 16 (05) ◽  
pp. 743-747 ◽  
Author(s):  
MAN SINGH ◽  
HIDEKI MATSUOKA

Surface tension (γ, mN/m) of potassium halide salts with water and interfacial tension (IFT) (±0.01 mN/m) of benzene interfaces with water are reported at 298.15 K temperature. The 0.1, 0.5 and 1.0 mol kg-1 potassium fluoride ( KF ), chloride ( KCl ), bromide ( KBr ) and potassium iodide ( KI ) solutions were studied. The KCl, KBr, KF and KI increased the surface tension by 5.2, 4.0, 3.1 and 3.0%, respectively, with salt–water interaction influence by anionic sizes. The surface tension of water from air–water to benzene–water interfaces is decreased by 51% due to the benzene–water mutual interaction with dipolar and π-conjugation. The KI, KF, KCl and KBr salts decrease the IFT by 63, 61, 61 and 56%, respectively, because of larger differences in sizes of the anions and the K + with individual salt. The KI developed stronger interactions with an induced potential of a large sized I - anion that held the water engaged and integrated the aqueous phase with higher interfacial tension. The dipolar and π-conjugation interaction model is proposed with biphasic systems.

Author(s):  
S. M. Sohel Murshed ◽  
Nam-Trung Nguyen

Investigations on temperature dependence of surface tension, interfacial tension and viscosity a nanofluid are reported in this paper. Experimental results show that nanofluid having TiO2 nanoparticles (15 nm) in deionized water exhibit substantially smaller surface tension and oil-based interfacial tension than those of the base fluid (i.e. deionized water). These surface and interfacial tensions of this nanofluid were found to decrease almost linearly with increasing temperature. The Brownian motion of nanoparticles in base fluid was identified as a possible mechanism for reduced surface and interfacial tensions of nanofluid. The measured effective viscosity of nanofluid was found to be insignificantly higher than that of base fluid and it also decreases with increasing fluid temperature.


2020 ◽  
Vol 869 ◽  
pp. 400-407
Author(s):  
Аleksey A. Ignatiev ◽  
Valeriy M. Gotovtsev ◽  
Denis V. Gerasimov ◽  
Pavel B. Razgovorov

The paper presents an analysis of positions, which a theory of a liquid wetting a solid surface is based on, using the sitting drop equilibrium as an example. Certain inconsistencies are indicated in these positions, which is the subject of the discussion. The paper explains why the interfacial tension of solid-gas has no effect on the equilibrium of a drop. It proposes a mechanism to form a liquid-solid interface layer, the tensor of interfacial tensions of which is represented as a pressure tensor. It is established that the surface tension of the interface layer is variable and changes in magnitude and direction depending on the wetting conditions. It is determined that it is not possible to present a range of phenomena accompanying the wetting of a solid surface with a liquid by examining the equilibrium of a three-phase contact line.


2010 ◽  
Vol 654-656 ◽  
pp. 390-393
Author(s):  
Debabrata Pradhan ◽  
Ramana G. Reddy

A thermodynamic model for the prediction of interfacial tension of liquid iron, inclusion and solid oxide substrate/refractory was evaluated. The combined Good’s and Young’s equations were used for high temperature liquid metal-solid oxide substrate-inclusion system to evaluate the interfacial tensions. The study predicts the liquid silicon (as model inclusion/impurity) adherence on the solid oxide substrate/refractory (MgO) in a liquid iron melt. The calculated results for interfacial tension between liquid iron-MgO values decreased from 1798 to 1026 ergs/cm2 as the temperature increases from 1823 to 1933 K, respectively. The Gibbs energy of adhesion for liquid silicon-MgO substrate was calculated shows that silicon adhesion to MgO substrate increases with increasing surface tension of liquid Fe/MgO and with decreasing temperature.


2018 ◽  
Author(s):  
Timothy Duignan ◽  
Marcel Baer ◽  
Christopher Mundy

<div> <p> </p><div> <div> <div> <p>The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration the surface tension decreases in apparent contradiction with thermodynamics. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we show that this surface tension decrease can be explained by surfactant impurities in water that create a substantial negative electrostatic potential at the air-water interface. This potential strongly attracts positive cations in water to the interface lowering the surface tension and thus explaining the signature of the Jones-Ray effect. At higher salt concentrations, this electrostatic potential is screened by the added salt reducing the magnitude of this effect. The effect of surface curvature on this behavior is also examined and the implications for unexplained bubble phenomena is discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces. </p> </div> </div> </div> </div>


2016 ◽  
Vol 9 (2) ◽  
pp. 167-176
Author(s):  
Eldha Sampepana ◽  
Paluphy Eka Yustini ◽  
Aditya Rinaldi ◽  
Amiroh Amiroh

Surfactant which is used as raw emulsifier in an industry activity such as Sodium Lauryl Sulfonate is a raw material import, it is petroleum derivative which is not renewable and may cause pollution to the environment, because it is not degraded and are carcinogenic. The purpose of the research is to compare the characteristics of the Quaternary methyl ester sulfonat (MES) and Sodium Lauryl Sulfonat (SLS) as emulsifier. First, make the MES by filtering and eliminating fatty acids of palm oil, then process the MES with enzymatic method become methyl ester, then react it in sulfonation and metanolization process, and also neutralized with NaOH. Next, the MES experiment is compared with SLS and existing MES in the market. The results show that surfactants MES experiment has value hidrofil lipofil balance (HLB) interfacial tension and emulsion stability greater than MES in the market and SLS. And the surface tension of MES experiment is larger than MES in the market, but smaller compared to SLS.ABSTRAKSurfaktan yang digunakan sebagai bahan baku emulsifer dalam aktivitas suatu industri pada saat ini seperti Sodium Lauril Sulfonat  merupakan bahan baku import yang merupakan turunan dari minyak bumi, dengan sifat tidak dapat diperbaharui dan dapat menimbulkan pencemaran terhadap lingkungan karena tidak mudah terdegradasi serta bersifat karsinogenik. Metil ester sulfonat dari bahan minyak sawit merupakan surfaktan dengan sifat mudah terdegradasi yang perlu diketahui karakteristiknya. Penelitian bertujuan untuk membandingkan karakteristik surfaktan metil ester sulfonat (MES) dan Sodium Lauril Sulfonat (SLS) sebagai bahan emulsifier. Mula-mula dilakukan pembuatan MES dengan cara menyaring dan menghilangkan asam lemak minyak sawit terlebih dahulu, kemudian diolah menjadi metil ester secara enzimatis, lalu direaksikan secara sulfonasi dan metanolisis, serta dinetralkan dengan NaOH. Selanjutnya MES hasil percobaan dibandingkan dengan SLS dan MES yang ada dipasaran. Hasil penelitian menunjukkan bahwa surfaktan MES memiliki nilai hidrofil lipofil balance (HLB) tegangan antar muka dan stabilitas emulsi lebih besar apabila dibandingkan dengan MES di pasaran dan SLS, kecuali nilai stabilitas emulsi antara MES dan SLS sama. Dan tegangan permukaan MES hasil percobaan, lebih besar dibandingkan dengan MES dipasaran, dan lebih kecil dibandingkan dengan SLS. Kata kunci :   Metil  ester sulfonat, hidrofil lipofil balance, emulsifier, sodium lauril sulfonat , stabilitas emulsi 


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1729
Author(s):  
Patrizio Raffa

The study of interactions between polyelectrolytes (PE) and surfactants is of great interest for both fundamental and applied research. These mixtures can represent, for example, models of self-assembly and molecular organization in biological systems, but they are also relevant in industrial applications. Amphiphilic block polyelectrolytes represent an interesting class of PE, but their interactions with surfactants have not been extensively explored so far, most studies being restricted to non-associating PE. In this work, interactions between an anionic amphiphilic triblock polyelectrolyte and different types of surfactants bearing respectively negative, positive and no charge, are investigated via surface tension and solution rheology measurements for the first time. It is evidenced that the surfactants have different effects on viscosity and surface tension, depending on their charge type. Micellization of the surfactant is affected by the presence of the polymer in all cases; shear viscosity of polymer solutions decreases in presence of the same charge or nonionic surfactants, while the opposite charge surfactant causes precipitation. This study highlights the importance of the charge type, and the role of the associating hydrophobic block in the PE structure, on the solution behavior of the mixtures. Moreover, a possible interaction model is proposed, based on the obtained data.


2021 ◽  
pp. 51885
Author(s):  
Ilhem Charfeddine ◽  
Jean‐Charles Majesté ◽  
Christian Carrot ◽  
Olivier Lhost

1994 ◽  
Vol 72 (9) ◽  
pp. 1915-1920 ◽  
Author(s):  
Laurier L. Schramm ◽  
Loren G. Hepler

We have measured (du Nouy ring and maximum bubble pressure methods) suspension–air surface tensions of aqueous suspensions of montmorillonite and have observed that these surface tensions are larger than those of pure water at the same temperatures. Further measurements have shown that dispersed montmorillonite also increases the suspension–toluene interfacial tension compared with that of pure water–toluene. Similar measurements on aqueous suspensions of kaolinite have yielded suspension–air interfacial tensions with uncertainties as large as the observed (small) effect, and also shown that the suspension–toluene interfacial tension is decreased (opposite to the effect of montmorillonite) by amounts larger than the experimental uncertainties. Measurements of maximum bubble pressures at different flow rates have provided information about the effect of surface age on observed surface tensions.


2014 ◽  
Vol 535 ◽  
pp. 701-704 ◽  
Author(s):  
Peng Lv ◽  
Ming Yuan Li ◽  
Mei Qin Lin

Producing ultra-low interfacial tensions and maintaining high viscosity is the most important mechanism relating to SP flooding for enhanced oil recovery. The interfacial tension between surfactant (PJZ-2 and BE)/polymer solution and Zahra oil was evaluated in the work. Based on the evaluatiojn of interfacial tension, the polymer FP6040s/surfactant BE system was selected as the SP flooding system for Zahra oil field.


Sign in / Sign up

Export Citation Format

Share Document