Interfacial Properties Prediction of Liquid Iron-Si Inclusion-MgO Refractory

2010 ◽  
Vol 654-656 ◽  
pp. 390-393
Author(s):  
Debabrata Pradhan ◽  
Ramana G. Reddy

A thermodynamic model for the prediction of interfacial tension of liquid iron, inclusion and solid oxide substrate/refractory was evaluated. The combined Good’s and Young’s equations were used for high temperature liquid metal-solid oxide substrate-inclusion system to evaluate the interfacial tensions. The study predicts the liquid silicon (as model inclusion/impurity) adherence on the solid oxide substrate/refractory (MgO) in a liquid iron melt. The calculated results for interfacial tension between liquid iron-MgO values decreased from 1798 to 1026 ergs/cm2 as the temperature increases from 1823 to 1933 K, respectively. The Gibbs energy of adhesion for liquid silicon-MgO substrate was calculated shows that silicon adhesion to MgO substrate increases with increasing surface tension of liquid Fe/MgO and with decreasing temperature.

2009 ◽  
Vol 16 (05) ◽  
pp. 743-747 ◽  
Author(s):  
MAN SINGH ◽  
HIDEKI MATSUOKA

Surface tension (γ, mN/m) of potassium halide salts with water and interfacial tension (IFT) (±0.01 mN/m) of benzene interfaces with water are reported at 298.15 K temperature. The 0.1, 0.5 and 1.0 mol kg-1 potassium fluoride ( KF ), chloride ( KCl ), bromide ( KBr ) and potassium iodide ( KI ) solutions were studied. The KCl, KBr, KF and KI increased the surface tension by 5.2, 4.0, 3.1 and 3.0%, respectively, with salt–water interaction influence by anionic sizes. The surface tension of water from air–water to benzene–water interfaces is decreased by 51% due to the benzene–water mutual interaction with dipolar and π-conjugation. The KI, KF, KCl and KBr salts decrease the IFT by 63, 61, 61 and 56%, respectively, because of larger differences in sizes of the anions and the K + with individual salt. The KI developed stronger interactions with an induced potential of a large sized I - anion that held the water engaged and integrated the aqueous phase with higher interfacial tension. The dipolar and π-conjugation interaction model is proposed with biphasic systems.


Author(s):  
S. M. Sohel Murshed ◽  
Nam-Trung Nguyen

Investigations on temperature dependence of surface tension, interfacial tension and viscosity a nanofluid are reported in this paper. Experimental results show that nanofluid having TiO2 nanoparticles (15 nm) in deionized water exhibit substantially smaller surface tension and oil-based interfacial tension than those of the base fluid (i.e. deionized water). These surface and interfacial tensions of this nanofluid were found to decrease almost linearly with increasing temperature. The Brownian motion of nanoparticles in base fluid was identified as a possible mechanism for reduced surface and interfacial tensions of nanofluid. The measured effective viscosity of nanofluid was found to be insignificantly higher than that of base fluid and it also decreases with increasing fluid temperature.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2319 ◽  
Author(s):  
Ahmed Fatih Belhaj ◽  
Khaled Abdalla Elraies ◽  
Mohamad Sahban Alnarabiji ◽  
Juhairi Aris B M Shuhli ◽  
Syed Mohammad Mahmood ◽  
...  

The applications of surfactants in Enhanced Oil Recovery (EOR) have received more attention in the past decade due to their ability to enhance microscopic sweep efficiency by reducing oil-water interfacial tension in order to mobilize trapped oil. Surfactants can partition in both water and oil systems depending on their solubility in both phases. The partitioning coefficient (Kp) is a key parameter when it comes to describing the ratio between the concentration of the surfactant in the oil phase and the water phase at equilibrium. In this paper, surfactant partitioning of the nonionic surfactant Alkylpolyglucoside (APG) was investigated in pre-critical micelle concentration (CMC) and post-cmc regimes at 80 °C to 106 °C. The Kp was then obtained by measuring the surfactant concentration after equilibration with oil in pre-cmc and post-cmc regimes, which was done using surface tension measurements and high-performance liquid chromatography (HPLC), respectively. Surface tension (ST) and interfacial tension (IFT) behaviors were investigated by performing pendant and spinning drop tests, respectively—both tests were conducted at high temperatures. From this study, it was found that APG was able to lower IFT as well as ST between water/oil and air/oil, and its effect was found to be more profound at high temperature. The partitioning test results for APG in pre-cmc and post-cmc regimes were found to be dependent on the surfactant concentration and temperature. The partitioning coefficient is directly proportional to IFT, where at high partitioning intensity, IFT was found to be very low and vice versa at low partitioning intensity. The effect of temperature on the partitioning in pre-cmc and post-cmc regimes had the same impact, where at a high temperature, additional partitioned surfactant molecules arise at the water-oil interface as the association of molecules becomes easier.


2008 ◽  
Vol 495 (1-2) ◽  
pp. 8-13 ◽  
Author(s):  
F. Millot ◽  
V. Sarou-Kanian ◽  
J.-C. Rifflet ◽  
B. Vinet

2020 ◽  
Vol 869 ◽  
pp. 400-407
Author(s):  
Аleksey A. Ignatiev ◽  
Valeriy M. Gotovtsev ◽  
Denis V. Gerasimov ◽  
Pavel B. Razgovorov

The paper presents an analysis of positions, which a theory of a liquid wetting a solid surface is based on, using the sitting drop equilibrium as an example. Certain inconsistencies are indicated in these positions, which is the subject of the discussion. The paper explains why the interfacial tension of solid-gas has no effect on the equilibrium of a drop. It proposes a mechanism to form a liquid-solid interface layer, the tensor of interfacial tensions of which is represented as a pressure tensor. It is established that the surface tension of the interface layer is variable and changes in magnitude and direction depending on the wetting conditions. It is determined that it is not possible to present a range of phenomena accompanying the wetting of a solid surface with a liquid by examining the equilibrium of a three-phase contact line.


Author(s):  
Pauf Neupane ◽  
Gerald Wilemski

To explore the wetting behavior of alkanes on bulk water interfaces, molecular dynamics simulations were carried out to determine the temperature dependence of (1) the surface tension of alkanes (octane,...


2015 ◽  
Vol 47 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Vinod Kumar ◽  
Christopher K. Harris ◽  
Arturo Bronson ◽  
Sanjay Shantha-Kumar ◽  
Arturo Medina

Author(s):  
K Das Chowdhury ◽  
R. W. Carpenter ◽  
W. Braue

Research on reaction-bonded SiC (RBSiC) is aimed at developing a reliable structural ceramic with improved mechanical properties. The starting materials for RBSiC were Si,C and α-SiC powder. The formation of the complex microstructure of RBSiC involves (i) solution of carbon in liquid silicon, (ii) nucleation and epitaxial growth of secondary β-SiC on the original α-SiC grains followed by (iii) β>α-SiC phase transformation of newly formed SiC. Due to their coherent nature, epitaxial SiC/SiC interfaces are considered to be segregation-free and “strong” with respect to their effect on the mechanical properties of RBSiC. But the “weak” Si/SiC interface limits its use in high temperature situations. However, few data exist on the structure and chemistry of these interfaces. Microanalytical results obtained by parallel EELS and HREM imaging are reported here.


2016 ◽  
Vol 9 (2) ◽  
pp. 167-176
Author(s):  
Eldha Sampepana ◽  
Paluphy Eka Yustini ◽  
Aditya Rinaldi ◽  
Amiroh Amiroh

Surfactant which is used as raw emulsifier in an industry activity such as Sodium Lauryl Sulfonate is a raw material import, it is petroleum derivative which is not renewable and may cause pollution to the environment, because it is not degraded and are carcinogenic. The purpose of the research is to compare the characteristics of the Quaternary methyl ester sulfonat (MES) and Sodium Lauryl Sulfonat (SLS) as emulsifier. First, make the MES by filtering and eliminating fatty acids of palm oil, then process the MES with enzymatic method become methyl ester, then react it in sulfonation and metanolization process, and also neutralized with NaOH. Next, the MES experiment is compared with SLS and existing MES in the market. The results show that surfactants MES experiment has value hidrofil lipofil balance (HLB) interfacial tension and emulsion stability greater than MES in the market and SLS. And the surface tension of MES experiment is larger than MES in the market, but smaller compared to SLS.ABSTRAKSurfaktan yang digunakan sebagai bahan baku emulsifer dalam aktivitas suatu industri pada saat ini seperti Sodium Lauril Sulfonat  merupakan bahan baku import yang merupakan turunan dari minyak bumi, dengan sifat tidak dapat diperbaharui dan dapat menimbulkan pencemaran terhadap lingkungan karena tidak mudah terdegradasi serta bersifat karsinogenik. Metil ester sulfonat dari bahan minyak sawit merupakan surfaktan dengan sifat mudah terdegradasi yang perlu diketahui karakteristiknya. Penelitian bertujuan untuk membandingkan karakteristik surfaktan metil ester sulfonat (MES) dan Sodium Lauril Sulfonat (SLS) sebagai bahan emulsifier. Mula-mula dilakukan pembuatan MES dengan cara menyaring dan menghilangkan asam lemak minyak sawit terlebih dahulu, kemudian diolah menjadi metil ester secara enzimatis, lalu direaksikan secara sulfonasi dan metanolisis, serta dinetralkan dengan NaOH. Selanjutnya MES hasil percobaan dibandingkan dengan SLS dan MES yang ada dipasaran. Hasil penelitian menunjukkan bahwa surfaktan MES memiliki nilai hidrofil lipofil balance (HLB) tegangan antar muka dan stabilitas emulsi lebih besar apabila dibandingkan dengan MES di pasaran dan SLS, kecuali nilai stabilitas emulsi antara MES dan SLS sama. Dan tegangan permukaan MES hasil percobaan, lebih besar dibandingkan dengan MES dipasaran, dan lebih kecil dibandingkan dengan SLS. Kata kunci :   Metil  ester sulfonat, hidrofil lipofil balance, emulsifier, sodium lauril sulfonat , stabilitas emulsi 


2010 ◽  
Vol 46 (3) ◽  
pp. 277-281 ◽  
Author(s):  
Yunming GAO ◽  
Jianxin SONG ◽  
Yeqin ZHANG ◽  
Xingmin GUO

Sign in / Sign up

Export Citation Format

Share Document