INFLUENCE OF PLASMA PRETREATMENT IN THE FORMATION OF DIAMOND-LIKE CARBON THIN FILMS

2009 ◽  
Vol 16 (06) ◽  
pp. 881-886 ◽  
Author(s):  
R. MAHESWARAN ◽  
SHIVARAMAN RAMASWAMY ◽  
OJAS MAHAPATRA ◽  
B. PURNACHANDRA RAO ◽  
C. GOPALAKRISHNAN ◽  
...  

Plasma-enhanced chemical vapor deposition has been used to synthesize diamond-like carbon (DLC) thin films. High purity argon and methane gases were used as precursors for the fabrication of the DLC films. The influence of plasma pretreatment on the growth of the DLC films has been studied by subjecting one of the substrates to plasma pretreatment prior to deposition of the DLC films, while maintaining the other substrate as the control. The structural properties of the DLC films have been characterized using atomic force microscopy and Raman spectroscopy. The film grown on the pretreated substrate shows a more uniform coating as compared to the film grown on non-pretreated silicon substrate. The results are discussed based on diffusivity of carbon on silicon and the effect of the plasma pretreatment.

2003 ◽  
Vol 762 ◽  
Author(s):  
William B. Jordan ◽  
Eric D. Carlson ◽  
Todd R. Johnson ◽  
Sigurd Wagner

AbstractThe structure of germanium thin films prepared on glass by plasma enhanced chemical vapor deposition was characterized by Raman spectroscopy, atomic force microscopy (AFM) and field emission scanning electron microscopy (SEM). Crystallinity, surface roughness, and grain size were measured as functions of film thickness and deposition temperature. Grain nucleation was apparent for films as thin as 10 nm. Over the thickness range studied, grain size increased with film thickness, whereas average surface roughness started to increase with film thickness, but then remained fairly constant at approximately 1 nm for a film thickness greater than 25 nm.


Carbon ◽  
2012 ◽  
Vol 50 (8) ◽  
pp. 2698-2702 ◽  
Author(s):  
Akihiko Yoshimura ◽  
Hirofumi Yoshimura ◽  
Seog Chul Shin ◽  
Ken-ichi Kobayashi ◽  
Makoto Tanimura ◽  
...  

1995 ◽  
Vol 403 ◽  
Author(s):  
G. Bai ◽  
S. Wittenbrock ◽  
V. Ochoa ◽  
R. Villasol ◽  
C. Chiang ◽  
...  

AbstractCu has two advantages over Al for sub-quarter micron interconnect application: (1) higher conductivity and (2) improved electromigration reliability. However, Cu diffuses quickly in SiO2and Si, and must be encapsulated. Polycrystalline films of Physical Vapor Deposition (PVD) Ta, W, Mo, TiN, and Metal-Organo Chemical Vapor Deposition (MOCVD) TiN and Ti-Si-N have been evaluated as Cu diffusion barriers using electrically biased-thermal-stressing tests. Barrier effectiveness of these thin films were correlated with their physical properties from Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Secondary Electron Microscopy (SEM), and Auger Electron Spectroscopy (AES) analysis. The barrier failure is dominated by “micro-defects” in the barrier film that serve as easy pathways for Cu diffusion. An ideal barrier system should be free of such micro-defects (e.g., amorphous Ti-Si-N and annealed Ta). The median-time-to-failure (MTTF) of a Ta barrier (30 nm) has been measured at different bias electrical fields and stressing temperatures, and the extrapolated MTTF of such a barrier is > 100 year at an operating condition of 200C and 0.1 MV/cm.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


1992 ◽  
Vol 271 ◽  
Author(s):  
R. Morancho ◽  
A. Reynes ◽  
M'b. Amjoud ◽  
R. Carles

ABSTRACTTwo organosilicon molecules tetraethysilane (TESi) and tetravinylsilane (TVSi) were used to prepare thin films of silicon carbide by chemical vapor deposition (C. V. D.). In each of the molecule, the ratio C/Si = 8, the only difference between TESi and TVSi is the structure of the radicals ethyl (.CH2-CH3) and vinyl (.CH=CH2). This feature induces different thermal behavior and leads to the formation of different materials depending on the nature of the carrier gas He or H2· The decomposition gases are correlated with the material deposited which is investigated by I.R. and Raman spectroscopy. The structure of the starting molecule influences the mechanisms of decomposition and consequently the structure of the material obtained.


2010 ◽  
Vol 663-665 ◽  
pp. 312-315
Author(s):  
Jian Rong Xiao ◽  
Tao Tong ◽  
Yan Wei Li ◽  
Xin Hai Li

Fluorinated diamond-like carbon (F-DLC) thin films are deposited using radio frequency plasma enhanced chemical vapor deposition under various gas flow ratios. The surface morphology of the F-DLC thin films deposited at lower gas flow ratios is a compact and uniform structure, and it became rough with the increase of gas flow ratios. The relative atomic contents of fluorine and chemical bonding configurations of C-Fx (x=1, 2, 3) in the thin films increases with the increase of gas flow ratios. The optical band gap of the thin films presents a decrease of different degree with the increase of gas flow ratios.


Sign in / Sign up

Export Citation Format

Share Document