GROWTH OF RF SPUTTERED NiO FILMS ON DIFFERENT SUBSTRATES — A COMPARATIVE STUDY

2017 ◽  
Vol 24 (07) ◽  
pp. 1750096 ◽  
Author(s):  
ANAS A. AHMED ◽  
MUTHARASU DEVARAJAN ◽  
NAVEED AFZAL

This work explores the structural, surface and optical properties of NiO films grown on Si, GaAs, PET and glass substrates. The NiO films were deposited on these substrates under same conditions by using radiofrequency (RF) magnetron sputtering of NiO target at 100[Formula: see text]C. The structural study by X-ray diffraction (XRD) showed the existence of (200) and (220) oriented NiO peaks on all the substrates. The preferred orientation of NiO films on Si, GaAs and glass was along (200) plane whereas the film grown on PET was observed to be oriented along (220) plane. The crystallite size of NiO on GaAs was the largest among the other substrates. The RMS surface roughness on PET was higher as compared to the other substrates. The band gap of NiO films grown on glass and PET was estimated from UV–Vis transmittance spectroscopy whereas the UV–Vis reflection spectroscopy was carried out to find out the band gap of NiO grown on GaAs and Si substrates. The band gap of NiO on PET was higher than its band gap obtained on other substrates. The results obtained on properties of NiO films on different substrates were correlated with each other.

2018 ◽  
Vol 24 (8) ◽  
pp. 5866-5871 ◽  
Author(s):  
G Balakrishnan ◽  
J. S. Ram Vinoba ◽  
R Rishaban ◽  
S Nathiya ◽  
O. S. Nirmal Ghosh

Nickel oxide (NiO) thin films were deposited on glass substrates using the RF magnetron sputtering technique at room temperature. The Argon and oxygen flow rates were kept constant at 10 sccm and 5 sccm respectively. The films were annealed at various temperatures (RT-300 °C) and its influence on the microstructural, optical and electrical properties were investigated. The X-ray diffraction (XRD) investigation of NiO films indicated the polycrystallinity of the films with the (111), (200) and (220) reflections corresponding to the cubic structure of NiO films. The crystallite size of NiO films was in the range ~4–14 nm. The transmittance of the films increased from 20 to 75% with increasing annealed temperature. The optical band gap of the films was 3.6–3.75 eV range for the as-deposited and annealed films. The Hall effect studies indicated the p-type conductivity of films and the film annealed at 300 °C showed higher carrier concentration (N), high conductivity (σ) and high mobility (μ) compared to other films. These NiO films can be used as a P-type semiconductor material in the devices require transparent conducting films.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 107 ◽  
Author(s):  
San-Ho Wang ◽  
Sheng-Rui Jian ◽  
Guo-Ju Chen ◽  
Huy-Zu Cheng ◽  
Jenh-Yih Juang

The effects of annealing temperature on the structural, surface morphological and nanomechanical properties of Cu-doped (Cu-10 at %) NiO thin films grown on glass substrates by radio-frequency magnetron sputtering are investigated in this study. The X-ray diffraction (XRD) results indicated that the as-deposited Cu-doped NiO (CNO) thin films predominantly consisted of highly defective (200)-oriented grains, as revealed by the broadened diffraction peaks. Progressively increasing the annealing temperature from 300 to 500 °C appeared to drive the films into a more equiaxed polycrystalline structure with enhanced film crystallinity, as manifested by the increased intensities and narrower peak widths of (111), (200) and even (220) diffraction peaks. The changes in the film microstructure appeared to result in significant effects on the surface energy, in particular the wettability of the films as revealed by the X-ray photoelectron spectroscopy and the contact angle of the water droplets on the film surface. The nanoindentation tests further revealed that both the hardness and Young’s modulus of the CNO thin films increased with the annealing temperature, suggesting that the strain state and/or grain boundaries may have played a prominent role in determining the film’s nanomechanical characterizations.


2014 ◽  
Vol 898 ◽  
pp. 33-36 ◽  
Author(s):  
Cai Zhen Zhang ◽  
Yong Gang Chen ◽  
Su Liu

Na/Mg co-doped (Na,Mg):ZnO films were fabricated on pyrex glass substrates by sol-gel spin-coating method. Effects of annealing on properties of the films were particularly investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmittance spectra. The internal stress of the films annealed at different temperature was calculated. Experimental and analytical results show that some NaCl freeze-out derivatives will appear on films when the annealing temperature is too low, with the increasing annealing temperature, the c-axis tensile stress is sharply decreased first, then the c-axis stress was changed into press stress and its value is increased continuously, so the structural, surface and the optical properties of the films improve first and deteriorate afterwards.


2019 ◽  
Vol 14 (29) ◽  
pp. 73-81
Author(s):  
Ramiz A. Mohammed Al-Ansari

NiO0.99Cu0.01 films have been deposited using thermal evaporationtechnique on glass substrates under vacuum 10-5mbar. The thicknessof the films was 220nm. The as -deposited films were annealed todifferent annealing temperatures (373, 423, and 473) K undervacuum 10-3mbar for 1 h. The structural properties of the films wereexamined using X-ray diffraction (XRD). The results show that noclear diffraction peaks in the range 2θ= (20-50)o for the as depositedfilms. On the other hand, by annealing the films to 423K in vacuumfor 1 h, a weak reflection peak attributable to cubic NiO wasdetected. On heating the films at 473K for 1 h, this peak wasobserved to be stronger. The most intense peak is at 2θ = 37.12o withthe preferential orientation of the films being (111) plane. The opticalproperties of the films have been studied. The effect of annealingtemperature on the optical parameters of NiO0.99Cu0.01 such astransmittance, reflectance, absorption coefficient, refractive index,extinction coefficient, and real and imaginary parts of dielectricconstant has been reported.


2013 ◽  
Vol 690-693 ◽  
pp. 1685-1689
Author(s):  
Chih Ming Wang ◽  
Chih Yu Wen ◽  
Ying Chung Chen ◽  
Shih Yuan Lin ◽  
Shiu Ting Shiau

Nickel oxide (NiO) thin films were deposited on ITO/glass substrates by radio frequency magnetron sputtering. The electrochromic property of NiO films was investigated using cyclic voltammograms (CV), performed on NiO films immersed in an electrolyte of 1 M LiClO4in propylene carbonate (PC). Optical, electrochemical and structural properties of the films, as a function of coloration–bleaching cycle, were characterized using an UV-Vis-NIR spectrophotometer, cyclic voltammetry (CV), X-ray diffraction(XRD) and a field emission scanning electron microscope (FE-SEM). The optimal electrochromic NiO film, with a thickness of 180 nm, exhibits a maximum transmittance variation (ΔT%) of 53.97 %, an optical density change (ΔOD) of 0.66, an intercalation charge (Q) of 14.65 mC/cm2, and a coloration efficiency (η) of 44.85 cm2/C between the colored and bleached states at a wavelength (λ) of 550 nm.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 985-988 ◽  
Author(s):  
N. S. DAS ◽  
K. K. CHATTOPADHYAY ◽  
B. SAHA ◽  
R. THAPA

Undoped and phosphorus doped nanocrystalline nickel oxide thin films have been synthesized on silicon and glass substrates by RF magnetron sputtering technique in pure Ar atmosphere. Proper phase formation was confirmed by X-ray diffraction analysis. Energy band gaps were determined using UV-Vis spectra. Formation of NiO nanoparticle of dimension ~15 nm was confirmed using HRTEM. Doping of phosphorus as an impurity was confirmed from EDX spectra and XPS studies. Spectroscopic ellipsometric studies were performed on such films and the spectra were analyzed with a suitable model. Optical constants were determined and refractive indices were found to increase with increase of phosphorus doping percentages.


2011 ◽  
Vol 18 (05) ◽  
pp. 189-195 ◽  
Author(s):  
Q. L. HUANG ◽  
L. FANG ◽  
H. B. RUAN ◽  
B. D. GUO ◽  
F. WU ◽  
...  

A series of Zn 1-x Mg x O (x = 0 ~ 0.16) films have been prepared on glass substrates by RF magnetron sputtering. The structure, surface morphology, composition, optical and electrical properties of the films were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, UV-Vis spectrophotometer and Hall measurement, respectively. It reveals that the obtained films are uniform hexagonal wurtzite polycrystalline with grain size about 100 nm.The optical transmittance are over 80% and the band gap (Eg) has linear relationship with Mg content: Eg = 1.67x + 3.274 (eV) (0 < x < 0.16). The resistivity of the films increases with the increase of Mg content. The Raman spectra of the films show that the position of E2 peaks (473 cm-1) has not changed, but the A1(LO) mode (577 cm-1) frequency shifts to lower wavenumbers with the increase of Mg content, indicating that Mg -doping does not cause intensive lattice deformation, but results in the decrease of the carrier concentration, which is corresponding to the degradation of the conductivity of ZnMgO films with the increase of Mg content.


2012 ◽  
Vol 503-504 ◽  
pp. 620-624
Author(s):  
Yan Zou ◽  
Qiu Xiang Liu ◽  
Yan Ping Jiang ◽  
Xin Gui Tang

Bi3.4Nd0.6Ti3O12 (BNT) thin films have been prepared on Si (100) substrate by RF magnetron sputtering method. The crystalline structures were studied by X-ray diffraction. The surface of the films have been observed by SEM. The reflectivity was measured by n & k Analyzer 2000 with the wavelength from 190 to 900 nm. The optical constant, thickness and the forbidden band gap were fitted. The results showed that with the annealing temperatures raised from 600 to 750 °C, the reflectivity index decreased from 2.224 to 2.039, and the forbidden band gap decreased from 3.19 to 2.99 eV. The possible mechanism of the effect of annealing temperature on the optical properties was discussed.


Author(s):  
T.C.M. Santhosh ◽  
Kasturi V. Bangera ◽  
G.K. Shivakumar

It has been a general practice to dope thin films with suitable dopants to modify the properties of the films to make them more suitable for potential applications. When the dopant concentrations are low, they do not normally affect the structure and morphology of the films. However, it may lead to drastic changes in electronic properties of the films. This might result from the dopant getting incorporated into the lattice of the material of the films. Cadmium selenide is an important compound semiconductor material with an attractive energy band gap. The present work relates to an attempt made to dope CdSe thin films with silver. CdSe : Ag (1 to 5&#37;) thin films were deposited on glass substrates at an optimized substrate temperature of 453 K using thermal evaporation technique. The grown films were analyzed using X-ray diffraction, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) techniques. It is observed that undoped CdSe thin films and CdSe : Ag films have hexagonal structure. The grain size was found to increase marginally with an increase in the Ag concentration. The optical band gap of the films determined by optical transmission measurements agree with that of CdSe. Electrical conductivity is observed to increase from 10-4 to 3.66 (Omega &#183;cm)-1 on addition of silver. The variation of resistance with temperature indicates that the prepared films consist of CdSe and Ag existing as two separate phases coexisting and contributing individually to the resistivity of the films. DOI: 10.21883/FTP.2017.12.45181.8430


Sign in / Sign up

Export Citation Format

Share Document