Microstructural and Properties of P-type Nickel Oxide (NiO) Thin Films Deposited by RF Magnetron Sputtering

2018 ◽  
Vol 24 (8) ◽  
pp. 5866-5871 ◽  
Author(s):  
G Balakrishnan ◽  
J. S. Ram Vinoba ◽  
R Rishaban ◽  
S Nathiya ◽  
O. S. Nirmal Ghosh

Nickel oxide (NiO) thin films were deposited on glass substrates using the RF magnetron sputtering technique at room temperature. The Argon and oxygen flow rates were kept constant at 10 sccm and 5 sccm respectively. The films were annealed at various temperatures (RT-300 °C) and its influence on the microstructural, optical and electrical properties were investigated. The X-ray diffraction (XRD) investigation of NiO films indicated the polycrystallinity of the films with the (111), (200) and (220) reflections corresponding to the cubic structure of NiO films. The crystallite size of NiO films was in the range ~4–14 nm. The transmittance of the films increased from 20 to 75% with increasing annealed temperature. The optical band gap of the films was 3.6–3.75 eV range for the as-deposited and annealed films. The Hall effect studies indicated the p-type conductivity of films and the film annealed at 300 °C showed higher carrier concentration (N), high conductivity (σ) and high mobility (μ) compared to other films. These NiO films can be used as a P-type semiconductor material in the devices require transparent conducting films.

2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Savita Sharma ◽  
Monika Tomar ◽  
Nitin K. Puri ◽  
Vinay Gupta

Tungsten trioxide (WO3) thin films were deposited by Rf-magnetron sputtering onto Pt interdigital electrodes fabricated on corning glass substrates. NO2 gas sensing properties of the prepared WO3 thin films were investigated by incorporation of catalysts (Sn, Zn, and Pt) in the form of nanoclusters. The structural and optical properties of the deposited WO3 thin films have been studied by X-ray diffraction (XRD) and UV-Visible spectroscopy, respectively. The gas sensing characteristics of all the prepared sensor structures were studied towards 5 ppm of NO2 gas. The maximum sensing response of about 238 was observed for WO3 film having Sn catalyst at a comparatively lower operating temperature of 200°C. The possible sensing mechanism has been highlighted to support the obtained results.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hoai Phuong Pham ◽  
Thanh Giang Le Thuy ◽  
Quang Trung Tran ◽  
Hoang Hung Nguyen ◽  
Huynh Tran My Hoa ◽  
...  

Crystalline structure and optoelectrical properties of silver-doped tin monoxide thin films with different dopant concentrations prepared by DC magnetron sputtering are investigated. The X-ray diffraction patterns reveal that the tetragonal SnO phase exhibits preferred orientations along (101) and (110) planes. Our results indicate that replacing Sn2+ in the SnO lattice with Ag+ ions produces smaller-sized crystallites, which may lead to enhanced carrier scattering at grain boundaries. This causes a deterioration in the carrier mobility, even though the carrier concentration improves by two orders of magnitude due to doping. In addition, the Ag-doped SnO thin films show a p-type semiconductor behavior, with a direct optical gap and decreasing transmittance with increasing Ag dopant concentration.


2002 ◽  
Vol 755 ◽  
Author(s):  
V. M. Naik ◽  
D. Haddad ◽  
R. Naik ◽  
J. Benci ◽  
G. W. Auner

ABSTRACTAnatase (A), rutile (R) and amorphous phase TiO2 thin films have been prepared by RF magnetron sputtering on unheated glass substrates by controlling the total pressure of sputtering gases (Ar + O2) and the substrate bias. The crystal structures of the films were confirmed by x-ray diffraction and Raman scattering. The analysis of optical absorption data for A- TiO2 film shows an energy bandgap (Eg) of 3.2 eV (indirect extrapolation) and ∼ 3.5 eV (direct extrapolation). On the other hand, R-TiO2 film shows Eg ∼ 2.9 eV (indirect) and 3.2 eV (direct). The latter film also shows the presence of amorphous regions with Eg ∼ 3.0 eV (indirect) and 3.8 eV (direct). The bandgap of both the films, obtained using indirect extrapolation, has a value range consistent with the previous measurements.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Abdalla A. Alnajjar

Al-doped ZnO thin films were deposited from two different targets. Ceramic targets were used in RF magnetron sputtering, whereas pulsed magnetron sputtering was used to grow films from powder targets. ZnO:Al films with different thicknesses were sputtered directly on soda-lime glass substrates. The film thickness was in the 0.04–2.0 μm range. The microstructure, such as the grain size and the texture, of the two differently grown ZnO:Al transparent conductive oxide films of different thickness, was studied using X-ray diffractionθ/2θscans. The optical properties, such as the transmittance and reflectance, were measured using a UV-Vis-NIR spectrometer. Further, the sheet resistance, resistivity, carrier concentration, and Hall mobility of these ZnO:Al thin films were measured as a function of film thickness. These results obtained from the two different deposition techniques were compared and contrasted.


2020 ◽  
Vol 1012 ◽  
pp. 119-124
Author(s):  
Paulo Victor Nogueira da Costa ◽  
Rodrigo Amaral de Medeiro ◽  
Carlos Luiz Ferreira ◽  
Leila Rosa Cruz

This work investigates the microstructural and morphological changes on CIGS thin films submitted to a post-deposition heat treatment. The CIGS 1000 nm-thick films were deposited at room temperature by RF magnetron sputtering onto glass substrates covered with molybdenum films. After deposition, the samples were submitted to a heat treatment, with temperatures ranging from 450 to 575 oC. The treatment was also carried out under a selenium atmosphere (selenization), from 400 to 500 oC. Morphological analyzes showed that the as-deposited film was uniform and amorphous. When the treatment was carried out without selenization, the crystallization occurred at or above 450 oC, and the grains remained nanosized. However, high temperatures led to the formation of discontinuities on the film surface and the formation of extra phases, as confirmed by X-ray diffraction data. The crystallization of the films treated under selenium atmosphere took place at lower temperatures. However, above 450 °C the film surface was discontinuous, with a lot of holes, whose amount increased with the temperature, showing that the selenization process was very aggressive. X-ray diffraction analyses showed that the extra phases were eliminated during selenization and the films had a preferential orientation along [112] direction. The results indicate that in the manufacturing process of solar cells, CIGS films deposited at room temperature should be submitted to a heat treatment carried out at 450 °C (without selenization) or 400 °C (with selenization).


2018 ◽  
Vol 7 (4.30) ◽  
pp. 213
Author(s):  
Lam Wai Yip ◽  
Afishah Alias ◽  
Asmahani Binti Awang ◽  
Abu Bakar Bin Abd Rahman ◽  
Khairul Anuar Bin Mohamad ◽  
...  

Cu-based conductive oxide such as CuGaO2 is seen to be a promising transparent p-type oxide material. The study of p-type semiconductor CuGaO2 thin films have been carried out to investigate the effects of different parameters in providing the optimum result in achieving good optical transparency and conductivity of the thin film. The CuGaO2 thin films were fabricated on quartz substrate via the Radio Frequency (RF) magnetron sputtering technique with varying substrate temperatures and different annealing temperatures. The p-type thin films were deposited at a temperature ranging from room temperature, 100°C, 200°C and 300°C. The samples were also annealed varying from temperature of 500°C, 600°C, 700°C and 800°C. The fabricated sample were characterized using X-ray diffraction (XRD), UV-Visible spectroscopy, and atomic force microscope (afm). XRD showed a peak at 2θ = 36.10° (012). The optical transparency values achieved from UV-Vis spectrometer were seen to be approximately 80% and the bandgaps were found to be in the range of 3.34-3.43 eV which is in line with the bandgap value from the research on CuGaO2 thin films.  From the afm, the mean surface roughness increases with increasing temperature and this is due to the increment of grain size. The highest grain size was observed at substrate temperature of 200°C.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


Sign in / Sign up

Export Citation Format

Share Document