RAMAN AND OPTOELECTRONIC PROPERTIES OF Zn1-xMgxO THIN FILMS PREPARED BY RF MAGNETRON SPUTTERING

2011 ◽  
Vol 18 (05) ◽  
pp. 189-195 ◽  
Author(s):  
Q. L. HUANG ◽  
L. FANG ◽  
H. B. RUAN ◽  
B. D. GUO ◽  
F. WU ◽  
...  

A series of Zn 1-x Mg x O (x = 0 ~ 0.16) films have been prepared on glass substrates by RF magnetron sputtering. The structure, surface morphology, composition, optical and electrical properties of the films were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, UV-Vis spectrophotometer and Hall measurement, respectively. It reveals that the obtained films are uniform hexagonal wurtzite polycrystalline with grain size about 100 nm.The optical transmittance are over 80% and the band gap (Eg) has linear relationship with Mg content: Eg = 1.67x + 3.274 (eV) (0 < x < 0.16). The resistivity of the films increases with the increase of Mg content. The Raman spectra of the films show that the position of E2 peaks (473 cm-1) has not changed, but the A1(LO) mode (577 cm-1) frequency shifts to lower wavenumbers with the increase of Mg content, indicating that Mg -doping does not cause intensive lattice deformation, but results in the decrease of the carrier concentration, which is corresponding to the degradation of the conductivity of ZnMgO films with the increase of Mg content.

2019 ◽  
Vol 33 (29) ◽  
pp. 1950348 ◽  
Author(s):  
B. Abdallah ◽  
M. D. Zidan ◽  
A. Allahham

Deposition of zinc sulfide (ZnS) thin films on Si (1 0 0) and glass substrates has been performed using RF magnetron sputtering method. Film structure has been analyzed by X-ray Diffraction (XRD), while the scanning electron microscope (SEM) images have been used to explore the film morphology. FTIR and Raman spectroscopies have been used to confirm the film composition. The stoichiometry has been verified by Energy dispersive X-ray spectroscopy (EDX) technique. The XRD patterns have indicated that the films possess a polycrystalline nanocrystallite cubic structure. The optical properties of the grown films were characterized by optical transmittance measurements (UV–Vis). The deduced energy bandgaps of the films show an increase from 3.75 eV to 3.88 eV with the power source changes from 90 W to 125 W. Furthermore, Z-scan technique (CW diode laser [Formula: see text] nm) was employed to estimate the nonlinear optical absorption of the prepared ZnS films.


2020 ◽  
Vol 1012 ◽  
pp. 119-124
Author(s):  
Paulo Victor Nogueira da Costa ◽  
Rodrigo Amaral de Medeiro ◽  
Carlos Luiz Ferreira ◽  
Leila Rosa Cruz

This work investigates the microstructural and morphological changes on CIGS thin films submitted to a post-deposition heat treatment. The CIGS 1000 nm-thick films were deposited at room temperature by RF magnetron sputtering onto glass substrates covered with molybdenum films. After deposition, the samples were submitted to a heat treatment, with temperatures ranging from 450 to 575 oC. The treatment was also carried out under a selenium atmosphere (selenization), from 400 to 500 oC. Morphological analyzes showed that the as-deposited film was uniform and amorphous. When the treatment was carried out without selenization, the crystallization occurred at or above 450 oC, and the grains remained nanosized. However, high temperatures led to the formation of discontinuities on the film surface and the formation of extra phases, as confirmed by X-ray diffraction data. The crystallization of the films treated under selenium atmosphere took place at lower temperatures. However, above 450 °C the film surface was discontinuous, with a lot of holes, whose amount increased with the temperature, showing that the selenization process was very aggressive. X-ray diffraction analyses showed that the extra phases were eliminated during selenization and the films had a preferential orientation along [112] direction. The results indicate that in the manufacturing process of solar cells, CIGS films deposited at room temperature should be submitted to a heat treatment carried out at 450 °C (without selenization) or 400 °C (with selenization).


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 373
Author(s):  
Wen-Yen Lin ◽  
Feng-Tsun Chien ◽  
Hsien-Chin Chiu ◽  
Jinn-Kong Sheu ◽  
Kuang-Po Hsueh

Zirconium-doped MgxZn1−xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm−3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1−xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2019 ◽  
Vol 372 ◽  
pp. 442-450 ◽  
Author(s):  
I. Cosme ◽  
S. Vázquez-y-Parraguirre ◽  
O. Malik ◽  
S. Mansurova ◽  
N. Carlos ◽  
...  

2011 ◽  
Vol 418-420 ◽  
pp. 293-296
Author(s):  
Qiu Yun Fu ◽  
Peng Cheng Yi ◽  
Dong Xiang Zhou ◽  
Wei Luo ◽  
Jian Feng Deng

Abstract. In this article, nano-ZnO films were deposited on SiO2/Si (100) substrates by RF (radio frequency) magnetron sputtering using high purity (99.99%) ZnO target. The effects of deposition time and annealing temperature have been investigated. XRD (X-ray diffraction) and FSEM (Field Emission Scanning Electron Microscopy) were employed to characterize the quality of the films. The results show that the ZnO film with thickness of 600nm annealed at 900°C has higher quality of both C-axis orientation and crystallization. And for the Zone film with thickness of 300nm annealed at 850°C, the quality of both C-axis orientation and crystallization is higher than that annealed at 900°C and 950°C.


Author(s):  
Xiao Di Liu ◽  
Dacheng Zhang

Nanosized tin oxide thin films were fabricated on silicon and quartz glass substrates by direct current reactive magnetron sputtering method, and then were calcined at different temperatures ranging from 400°C to 900°C. The results analyzed by X ray photoemission spectra (XPS), scanning electron microscope (SEM), Spectroscopic ellipsometer, Powder X-ray diffraction (XRD), and HP4145B semiconductor parameter analyzer measurements show that the sample with quartz glass substrate and calcinated at 650°C possesses better properties and suitable to be used in our gas sensor.


2009 ◽  
Vol 79-82 ◽  
pp. 931-934 ◽  
Author(s):  
Liang Tang Zhang ◽  
Jie Song ◽  
Quan Feng Dong ◽  
Sun Tao Wu

The polycrystalline V2O5 films as the anode in V2O5 /LiPON /LiCoO2 lithium microbattary were prepared by RF magnetron sputtering system. The V2O5 films’ crystal structures, surface morphologies and composition were characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The microbatteries were fabricated by micro electro-mechanical system (MEMS) technology. The battery active unit area is 500μm×500μm, and the thickness of V2O5, LiPON and LiCoO2 films was estimated to be 200, 610, and 220nm, respectively. The discharge volumetric capacity is between 9.36μAhcm-2μm-1 and 9.63μAhcm-2μm-1 after 40 cycles.


2013 ◽  
Vol 302 ◽  
pp. 146-150
Author(s):  
L.L. Li ◽  
Qiu Xiang Liu ◽  
Yan Zou ◽  
Xin Gui Tang ◽  
Yan Ping Jiang

Bi0.9Nd0.1FeO3 (BNFO) films were deposited on Si (100) and (La,Sr)(Al,Ta)O3 (100) (LAST) substrate by radio frequency (RF) magnetron sputtering method respectively. The structure,morphology and magnetic properties were studied. X-ray diffraction (XRD) result indicates that the BNFO films on different substrate adopted different orientation. Cross-section scanning electron microscopy shows that the film thickness is 145 nm.Magnetic properties measurement shows that the film on Si(100) substrate has the larger saturation magnetization (Ms) of 3 686 emu/cm3, while the Ms value of the BNFO films on LSAT(100) substrate is only 1 213 emu/cm3.


Sign in / Sign up

Export Citation Format

Share Document