Dynamic Stability of Slender Concrete-Filled Steel Tubular Columns with General Supports

2019 ◽  
Vol 19 (04) ◽  
pp. 1950045
Author(s):  
Youqin Huang ◽  
Jiyang Fu ◽  
Di Wu ◽  
Airong Liu ◽  
Wei Gao ◽  
...  

The static stability of slender concrete-filled steel tubular (CFST) columns has been explored thoroughly while few researches have been carried out on the dynamic stability of CFST columns even if all applied loadings are naturally time-dependent. This paper presents an analytical procedure for evaluating the dynamic stability of CFST columns of various composite cross-sections under general boundary conditions. This paper is featured by the following facts: (1) proportional damping is considered in derivation of the governing equations on the lateral parametric vibration of the CFST columns subject to axial excitation; (2) Bolotin’s method is used to determine the boundaries of the regions of dynamic instability for the CFST columns with general supports; (3) the relationship of static and dynamic stability, and the effects of boundary conditions and cross-sectional forms are uncovered. New findings of this investigation are (1) larger amplitude or constant component of excitation make it easier for the dynamic instabilities of the CFST columns to occur, while increasing the constant component of excitation reduces the critical value of frequency ratio for the dynamic instability to occur; (2) the dynamic stability analysis can determine the critical loads for both the static and dynamic instability of CFST columns, and the critical instability load decreases with increasing disturbance on the static load; (3) under the same consumptions of steel and concrete, the square columns have better performance of dynamic stability than the circular columns, but there is no definite conclusion on the effect of hollow size on the dynamic stability of double-skin columns.

2014 ◽  
Vol 638-640 ◽  
pp. 1397-1401
Author(s):  
Kai Xiang ◽  
Guo Hui Wang ◽  
Yan Chong Pan

This paper presents a review of research progress in fire performance of concrete-filled steel tubular (CFST) columns. Experimental results of CFST columns in fire are reviewed with influence parameters, such as heights, cross-sectional dimension, section types, concrete types, concrete strengths, load ratio, load eccentricity, fire exposed sides and so on. Some conclusions of CFST columns under fire conditions are summarized. Deficiencies in the fire performance experiments of CFST columns are identified, which provide the focus for future research in the field.


2014 ◽  
Vol 919-921 ◽  
pp. 1794-1800
Author(s):  
Xin Zhi Zheng ◽  
Xin Hua Zheng

Abstract: 7 square steel tubular columns were tested to discuss the ultimate axial bearing capacity, ductility performance and the steel consumption under stiffened by steel belts and binding bars of different cross-sections. Test results indicate that only by increasing fewer amounts of steel usage, stiffened square CFST columns with binding bars can not only improve the overall effects of restraint and alleviate regional local buckling between the binding bars, but also improve the bearing capacity of concrete filled square steel tubular columns. The utility benefits and the economical benefit is considerable, deserving extensive use.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Rosalin Sahoo ◽  
B. N. Singh

A structure with periodic dynamic load may lead to dynamic instability due to parametric resonance. In the present work, the dynamic stability analysis of laminated composite and sandwich plate due to in-plane periodic loads is studied based on recently developed inverse trigonometric zigzag theory (ITZZT). Transverse shear stress continuity at layer interfaces along with traction-free boundary conditions on the plate surfaces is satisfied by the model obviating the need of shear correction factor. An efficient C0 continuous, eight noded isoparametric element with seven field variable is employed for the dynamic stability analysis of laminated composite and sandwich plates. The boundaries of instability regions are determined using Bolotin's approach and the first instability zone is presented either in the nondimensional load amplitude–excitation frequency plane or load amplitude–load frequency plane. The influences of various parameters such as degrees of orthotropy, span-thickness ratios, boundary conditions, static load factors, and thickness ratios on the dynamic instability regions (DIRs) are studied by solving a number of problems. The evaluated results are validated with the available results in the literature based on different deformation theories. The efficiency of the present model is ascertained by the improved accuracy of predicted results at the cost of less computational involvement.


2003 ◽  
Vol 03 (03) ◽  
pp. 391-403 ◽  
Author(s):  
A. K. L. Srivastava ◽  
P. K. Datta ◽  
A. H. Sheikh

This paper is concerned with the dynamic stability of stiffened plates with cutout subjected to harmonic in-plane edge loadings. The plate is modelled using the Mindlin–Reissner plate theory and the method of Hill's infinite determinants is applied to analyze the dynamic instability regions. Stiffened plates with cutout possessing different boundary conditions, aspect ratios, and cutout sizes considering and neglecting in-plane displacements have been analyzed for dynamic instability. The boundaries of the instability regions, including those of the principal one, are computed and presented graphically. These results are given in a non-dimensional form and illustrated by means of numerical examples.


2021 ◽  
Vol 11 (24) ◽  
pp. 11645
Author(s):  
Anton Chepurnenko ◽  
Batyr Yazyev ◽  
Besarion Meskhi ◽  
Alexey Beskopylny ◽  
Kazbek Khashkhozhev ◽  
...  

Concrete-filled steel tubular (CFST) columns are widely used in construction due to effective resistance to compression and bending joint action. However, currently, there is no generally accepted effective calculation method considering both nonlinearities of the materials and lateral compression. The article proposes the finite element analysis method of concrete-filled steel tubular columns in a physically nonlinear formulation by reducing a three-dimensional problem to a two-dimensional one based on the hypothesis of plane sections. The equations of Geniev’s concrete theory of plasticity are used as relations establishing the relationship between stresses and strains. The technique was tested by comparing the solution with the calculation in a three-dimensional formulation in the LIRA-SAPR software package and with the experimental data of A.L. Krishan and A.I. Sagadatov. It has been established that the effective area of operation of circular-section columns are small eccentricities of the longitudinal force. The proposed approach can be applied to analyzing the stress–strain state and bearing capacity of pipe-concrete columns of arbitrary cross-sections. There are no restrictions on the composition of concrete, and the shell material can be steel and fiberglass.


2018 ◽  
Vol 15 (1) ◽  
pp. 130-147 ◽  
Author(s):  
Rajendran Selvamani

Purpose This study aims to construct a mathematical model to study the dispersion analysis of magneto-electro elastic plate of arbitrary cross sections immersed in fluid by using the Fourier expansion collocation method (FECM). Design/methodology/approach The analytical formulation of the problem is designed and developed using three-dimensional linear elasticity theories. As the inner and outer boundaries of the arbitrary cross-sectional plate are irregular, the frequency equations are obtained from the arbitrary cross-sectional boundary conditions by using FECM. The roots of the frequency equation are obtained using the secant method, which is applicable for complex solutions. Findings The computed physical quantities such as radial stress, hoop strain, non-dimensional frequency, magnetic potential and electric potential are plotted in the form of dispersion curves, and their characteristics are discussed. To study the convergence, the non-dimensional wave numbers of longitudinal modes of arbitrary (elliptic and cardioid) cross-sectional plates are obtained using FECM and finite element method and are presented in a tabular form. This result can be applied for optimum design of composite plates with arbitrary cross sections. Originality/value This paper contributes the analytical model for the role of arbitrary cross-sectional boundary conditions and impact of fluid loading on the dispersion analysis of magneto-electro elastic plate. From the graphical patterns of the structure, the effects of stress, strain, magnetic, electric potential and the surrounding fluid on the various considered wave characteristics are more significant and dominant in the cardioid cross sections. Also, the aspect ratio (a/b) and the geometry parameters of elliptic and cardioids cross sections are significant to the industry or other fields that require more flexibility in design of materials with arbitrary cross sections.


2020 ◽  
Vol 10 (4) ◽  
pp. 1345 ◽  
Author(s):  
Farshid Allahkarami ◽  
Hasan Tohidi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

This paper investigates the dynamic buckling of bi-directional (BD) functionally graded (FG) porous cylindrical shells for various boundary conditions, where the FG material is modeled by means of power law functions with even and uneven porosity distributions of ceramic and metal phases. The third-order shear deformation theory (TSDT) is adopted to derive the governing equations of the problem via the Hamilton’s principle. The generalized differential quadrature (GDQ) method is applied together with the Bolotin scheme as numerical strategy to solve the problem, and to draw the dynamic instability region (DIR) of the structure. A large parametric study examines the effect of different boundary conditions at the extremities of the cylindrical shell, as well as the sensitivity of the dynamic stability to different thickness-to-radius ratios, length-to-radius ratios, transverse and longitudinal power indexes, porosity volume fractions, and elastic foundation constants. Based on results, the dynamic stability of BD-FG cylindrical shells can be controlled efficiently by selecting appropriate power indexes along the desired directions. Furthermore, the DIR is highly sensitive to the porosity distribution and to the extent of transverse and longitudinal power indexes. The numerical results could be of great interest for many practical applications, as civil, mechanical or aerospace engineering, as well as for energy devices or biomedical systems.


2009 ◽  
Vol 09 (02) ◽  
pp. 357-367 ◽  
Author(s):  
JEAN LERBET ◽  
ELIE ABSI ◽  
ALAIN RIGOLOT

It is well-known that the domains of static stability and dynamic stability (even for a linear approach) do not match each other when the system is no more conservative and the dynamic approach is usually privileged, meaning that the dynamic stability domain is included in the static one. Following previous works proposing a new criterion of static stability of nonconservative systems and prolonging a paper of Gallina devoted to linear dynamic instability (flutter), we show in this paper some remarkable relations between the two approaches: contrary to the common thought, the new static stability criterion implies partially the dynamic one.


2018 ◽  
Vol 27 (4) ◽  
pp. 371-379 ◽  
Author(s):  
Samuele Contemori ◽  
Andrea Biscarini ◽  
Fabio M. Botti ◽  
Daniele Busti ◽  
Roberto Panichi ◽  
...  

Context: Isolated infraspinatus muscle atrophy (IIMA) affects only the hitting shoulder of overhead-activity athletes and is caused by suprascapular nerve neuropathy. No study has assessed the static and dynamic stability of the shoulder in overhead professional athletes with IIMA to reveal possible shoulder sensorimotor alterations. Objective: To assess the shoulder static stability, dynamic stability, and strength in professional volleyball players with IIMA and in healthy control players. Design: Cross-sectional study. Setting: Research lab. Patients or Other Participants: A total of 24 male professional volleyball players (12 players with diagnosed IIMA and 12 healthy players) recruited from local volleyball teams. Intervention(s): Static stability was evaluated with 2 independent force platforms, and dynamic stability was assessed with the “Upper Quarter Y Balance Test.” Main Outcome Measure(s): The static stability assessment was conducted in different support (single hand and both hands) and vision (open and closed eyes) conditions. Data from each test were analyzed with analysis of variance and paired t-test models to highlight statistical differences within and between groups. Results: In addition to reduced abduction and external rotation strength, athletes with IIMA consistently demonstrated significant less static (P < .001) and dynamic stability (P < .001), compared with the contralateral shoulder and with healthy athletes. Closed eyes condition significantly enhanced the static stability deficit of the shoulder with IIMA (P = .04 and P = .03 for both hand and single hand support, respectively) but had no effect on healthy contralateral and healthy players’ shoulders. Conclusions: This study highlights an impairment of the sensorimotor control system of the shoulder with IIMA, which likely results from both proprioceptive and strength deficits. This condition could yield subtle alteration in the functional use of the shoulder and predispose it to acute or overuse injuries. The results of this study may help athletic trainers and physical/physiotherapists to prevent shoulder injuries and create to specific proprioceptive and neuromuscular training programs.


2013 ◽  
Vol 9 (1) ◽  
pp. 23-48 ◽  
Author(s):  
P. Ponnusamy

PurposeThis paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using Fourier expansion collocation method (FECM).Design/methodology/approachA mathematical model is developed to study the wave propagation in an electro‐magneto‐elastic plate of polygonal cross‐sections using the theory of elasticity. The frequency equations are obtained from the arbitrary cross‐sectional boundary conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the surface of the plate directly. Hence, the FECM is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.FindingsFrom the literature survey, it is clear that the free vibration of electro‐magneto‐elastic plate of polygonal cross‐sections have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of electro‐magneto‐elastic plates are based on the traditional circular cross‐sections only. So, in this paper, the wave propagation in electro‐magneto‐elastic plate of polygonal cross‐sections is studied using the FECM. The computed non‐dimensional frequencies are plotted in the form of dispersion curves and their characteristics are discussed.Originality/valueThe researchers have discussed the circular, rectangular, triangular and square cross‐sectional plates by the boundary conditions. In this problem, the author studied the vibrations of polygonal (triangle, square, pentagon and hexagon) cross‐sectional plates using the geometrical relation which is applicable to all the cross‐sections. The problem may be extended to any kinds of cross‐sections by using the proper geometrical relations.


Sign in / Sign up

Export Citation Format

Share Document