GATE LENGTH SCALING AND MICROWAVE PERFORMANCE OF DOUBLE GATE NANOTRANSISTORS

2005 ◽  
Vol 04 (05n06) ◽  
pp. 1021-1024 ◽  
Author(s):  
ABHINAV KRANTI ◽  
TSUNG MING CHUNG ◽  
JEAN-PIERRE RASKIN

A detailed analysis of static and dynamic characteristics of deep submicron double and single gate SOI MOSFETs is presented, based on 2D numerical simulations for high frequency analog applications. Results show that although DG MOSFET offers excellent performance with respect to short channel immunity and higher transconductance, it offers nearly two times the value of gate-to-source capacitance as compared to SG devices, thus limiting the cut-off frequency at higher gate voltages. At ultra short channel lengths and low gate overdrive voltages, DG devices show a significant improvement in cut-off frequency compared to SG devices, thus presenting DG nanotransistors as potential candidates for analog microwave applications.

1996 ◽  
Vol 428 ◽  
Author(s):  
Abhijit Phanse ◽  
Samar Saha

AbstractThis paper addresses hot-carrier related reliability issues in deep submicron silicon nMOSFET devices. In order to monitor the hot-carrier induced device degradation, the substrate current was measured for devices with varying channel lengths (20 um - 0.24 um) under various biasing conditions. Deep submicron devices experience velocity saturation of channel carriers due to extremely high lateral electric fields. To evaluate the effects of velocity saturation in the channel, the pinch-off length in the channel was extracted for all the devices of the target technology. It was observed that for very short channel devices, carriers in most of the channel experience velocity saturation and almost the entire channel gets pinched off. It is shown in this paper that for very short channel devices, the pinch-off length in the channel is limited by the effective channel length, and that velocity saturation effects are critical to the transport of channel carriers.


Author(s):  
Ajay Kumar Singh

Purpose This study aims to develop a compact analytical models for undoped symmetric double-gate MOSFET based on carrier approach. Double-Gate (DG) MOSFET is a newly emerging device that can potentially further scale down CMOS technology owing to its excellent control of short channel effects, ideal subthreshold slope and free dopant-associated fluctuation effects. DG MOSFET is of two types: the symmetric DG MOSFET with two gates of identical work functions and asymmetric DG MOSFET with two gates of different work functions. To fully exploit the benefits of DG MOSFETs, the body of DG MOSFETs is usually undoped because the undoped body greatly reduces source and drain junction capacitances, which enhances the switching speed. Highly accurate and compact models, which are at the same time computationally efficient, are required for proper modeling of DG MOSFETs. Design/methodology/approach This paper presents a carrier-based approach to develop a compact analytical model for the channel potential, threshold voltage and drain current of a long channel undoped symmetric DG MOSFETs. The formulation starts from a solution of the 2-D Poisson’s equation in which mobile charge term has been included. The 2-D Poisson’s equation in rectangular coordinate system has been solved by splitting the total potential into long-channel (1-D Poisson’s equation) and short-channel components (remnant 2-D differential equation) in accordance to the device physics. The analytical model of the channel potential has been derived using Boltzmann’s statistics and carrier-based approach. Findings It is shown that the metal gate suppresses the center potential more than the poly gate. The threshold voltage increases with increasing metal work function. The results of the proposed models have been validated against the Technology Computer Aided Design simulation results with close agreement. Originality/value Compact Analytical models for undoped symmetric double gate MOSFETs.


10.14311/876 ◽  
2006 ◽  
Vol 46 (5) ◽  
Author(s):  
R. Stenzel ◽  
L. Müller ◽  
T. Herrmann ◽  
W. Klix

The further improvement of nanoscale electron devices requires support by numerical simulations within the design process. After a brief description of our SIMBA 2D/3D-device simulator, the results of the simulation of DG-MOSFETs are represented. Starting from a basic structure with a gate length of 30 nm, the model parameters were calibrated on the basis measured values from the literature. Afterwards variations in of gate length, channel thickness and doping, gate oxide parameters and source/drain doping were made in connection with numerical calculation of the device characteristics. Then a DG-MOSFET with a gate length of 15 nm was optimized. The optimized structure shows suppressed short channel behavior and short switching times of about 0.15 ps. 


2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


Sign in / Sign up

Export Citation Format

Share Document