scholarly journals Preparation and Characterization of Sludge-Based Magnetic Biochar by Pyrolysis for Methylene Blue Removal

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2473
Author(s):  
Huiping Zeng ◽  
Wei Qi ◽  
Longxue Zhai ◽  
Fanshuo Wang ◽  
Jie Zhang ◽  
...  

The development of low-cost adsorbent is an urgent need in the field of wastewater treatment. In this study, sludge-based magnetic biochar (SMB) was prepared by pyrolysis of sewage sludge and backwashing iron mud without any chemical agents. The samples were characterized by TGA, XRD, ICP, Organic element analysis, SEM, TEM, VSM and BET. Characterization analysis indicated that the magnetic substance in SMB was Fe3O4, and the saturation magnetization was 25.60 emu·g−1, after the adsorption experiment, SMB could be separated from the solution by a magnet. The batch adsorption experiment of methylene blue (MB) adsorption showed that the adsorption capacities of SMB at 298 K, 308 K and 318 K were 47.44 mg·L−1, 39.35 mg·L−1, and 25.85 mg·L−1, respectively. After one regeneration with hydrochloric acid, the maximum adsorption capacity of the product reached 296.52 mg·g−1. Besides, the adsorption kinetic described well by the pseudo-second order model revealed that the intraparticle diffusion was not just the only rate controlling step in adsorption process. This study gives a reasonable reference for the treatment of sewage sludge and backwashing iron mud. The product could be used as a low-cost adsorbent for MB removal.

2019 ◽  
Vol 41 (1) ◽  
pp. 62-62
Author(s):  
Farida Bouremmad Farida Bouremmad ◽  
Abdennour Bouchair Abdennour Bouchair ◽  
Sorour Semsari Parapari Sorour Semsari Parapari ◽  
Shalima Shawuti and Mehmet Ali Gulgun Shalima Shawuti and Mehmet Ali Gulgun

Biosorbents can be an alternative to activated carbon. They are derived from agricultural by-products or aquatic biomass. They are low cost and they may have comparable performances to those of activated carbon. The present study focuses on the characterization of the Corallina Elongata (CE) alga and its adsorption performance for Methylene Blue (MB), this alga is found in abundance at the Mediterranean coast of the city of Jijel in eastern Algeria. The dried alga was characterized using various characterization techniques such as DTA, TG, FTIR, XRD, SEM and EDX, which showed that the material consists essentially of a calcite containing magnesium. Batch adsorption studies were carried out and the effect of experimental parameters Such as pH, initial dye concentration, temperature, adsorbent dose and contact time, on the adsorption of MB was studied. The kinetic experimental data were found to conform to the pseudo-second-order model with good correlation and equilibrium data were best fitted to The Langmuir model, with a maximum adsorption capacity of 34.4 mg/g. The adsorption isotherms at various temperatures allowed the determination of certain thermodynamic parameters (ΔG, ΔH and ΔS). Finally, the adsorption results showed a good affinity between CE and MB with a high adsorption capacity.


2018 ◽  
Vol 78 (4) ◽  
pp. 803-813
Author(s):  
Tao Chen ◽  
Bo Yan ◽  
Da-Mao Xu ◽  
Li-li Li

Abstract In the present work, an attractive and creative adsorbent derived from sewage sludge was freshly fabricated via pyrolysis technology, followed by modification for improving the absorptive ability. First, the (NH4)2S2O8 modified pyrolytic sludge (MSAP) was selected from 19 modified pyrolytic sludges for the highest removal efficiency and adsorption capacity for methylene blue (MB). Then, the adsorption performance for MB of MSAP was compared systematically with the pristine adsorbent (MSDW) by batch adsorption experiments. The main conclusions were that the adsorption process was better fitted with the Langmuir model, and the maximum adsorption capacity (qmax) of MSAP was observed to be 149.05 mg g−1. Moreover, the adsorption kinetics data showed a good fit with the pseudo second order model; when the addition of MSAP was 1.0 g·L−1, the rate constant was 0.05 g·mg−1·min−1, which was far greater than that of the other modified adsorbents.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550009 ◽  
Author(s):  
N. M. Mubarak ◽  
Y. T. Fo ◽  
Hikmat Said Al-Salim ◽  
J. N. Sahu ◽  
E. C. Abdullah ◽  
...  

The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 961 ◽  
Author(s):  
Xiaojun Shen ◽  
Panli Huang ◽  
Fengfeng Li ◽  
Xiluan Wang ◽  
Tongqi Yuan ◽  
...  

Low cost fabrication of water treatment polymer materials directly from biomass resources is urgently needed in recent days. Herein, a compressive alginate sponge (AS) is prepared from seaweed biomass resources through a green two-step lyophilization method. This material is much different from conventional oven-, air-, vacuum-dried alginate-based adsorbents, which show limitations of shrinkage, rigidness, tight nonporous structure and restricted ions diffusion, hindering its practical applications, and was used to efficiently remove methylene blue (MB), a main colorful contaminant in dye manufacturing, from wastewater. The batch adsorption studies are carried out to determine the impact of pH, contact time and concentration of dye on the adsorption process. The maximum adsorption capacity can be obtained at 1279 mg g−1, and the shape-moldable AS can be facilely utilized as a fixed-bed absorption column, providing an efficient approach for continuous removal of MB within a short time. It is also important that such a compressive AS can be regenerated by a simple squeezing method while retaining about 70% capacity for more than ten cycles, which is convenient to be reused in practical water treatment. Compressive AS demonstrates its merits of high capability, large efficiency and easy to recycle as well as low cost resources, indicating widespread potentials for application in dye contaminant control regarding environmental protection.


2021 ◽  
Author(s):  
Asma Nasrullah ◽  
Amir Sada Khan ◽  
A. H. Bhat ◽  
Taghreed M. Fagieh ◽  
Ersaa M. Bakhsh ◽  
...  

Abstract This study examines mangosteen peels waste and alginate beads (MPAB) as an efficient, sustainable and low-cost adsorbent for removal of methylene blue (MB) cationic dye from aqueous solution in a batch adsorption system. Surface functional groups, surface morphology, surface properties, and thermal stability of MBAB were analyzed using various instrumental techniques such as FTIR, FESEM, BET and TGA techniques. MPAB adsorption efficiency for MB was investigated through variation of dosage (0.01- 0.08g), pH (2- 10), contact time (60- 1320 min), MB concentration (20- 100 mg/L) and temperature (298- 333K). MPAB showed maximum removal capacity of 373 mg/g at 25 oC in basic medium. Kinetic and isotherm studies showed that pseudo second order kinetic models and both Freundlich and Langmuir isotherms best fit the experimental data. The findings revealed that novel MPAB has the potential to be a cost-effective adsorbent for removal of textile dyes.


Author(s):  
Thaisa Caroline Andrade Siqueira ◽  
Isabella Zanette da Silva ◽  
Andressa Jenifer Rubio ◽  
Rosângela Bergamasco ◽  
Francielli Gasparotto ◽  
...  

Adsorption in biomass has proven to be a cost-effective option for treatment of wastewater containing dyes and other pollutants, as it is a simple and low cost technique and does not require high initial investments. The present work aimed to study the adsorption of methylene blue dye (MB) using sugarcane bagasse (SCB). The biomass was characterized by scanning electron microscopy (SEM). Adsorption studies were conducted batchwise. Kinetics, adsorption isotherms, and thermodynamics were studied. The results showed that SCB presented a maximum adsorption capacity of 9.41 mg g−1 at 45 °C after 24 h of contact time. Adsorption kinetics data better fitted the pseudo-second order model, indicating a chemical process was involved. The Sips’s three-parameter isotherm model was better for adjusting the data obtained for the adsorption isotherms, indicating a heterogeneous adsorption process. The process showed to be endothermic, spontaneous, and feasible. Therefore, it was concluded that SCB presented as a potential biosorbent material for the treatment of MB-contaminated waters.


2019 ◽  
Vol 79 (11) ◽  
pp. 2106-2115 ◽  
Author(s):  
Fengfeng Ma ◽  
Baowei Zhao ◽  
Jingru Diao

Abstract A magnetic cotton stalk biochar (MCSBC) was synthesized through chemical co-precipitation, based on cotton stalk biochar (CSBC). The MCSBC and CSBC were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The characterization analyses showed that the magnetization process endowed the CSBC with excellent magnetic properties with a superparamagnetic magnetization of 27.59 emu/g. Batch adsorption experiment results indicated that the Cr(VI) maximum adsorption capacity of MCSBC was 20.05 mg/g, which was higher than that of CSBC (18.77 mg/g). The adsorption kinetic data were well fitted by the pseudo-second-order model and the adsorption isotherms were well represented by the Sips isotherm model. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic, and the entropy increased. The potential adsorption mechanism was the electrostatic adsorption of anionic Cr(VI) to the positively charged MCSBC surface, the reduction of Cr(VI) into Cr(III) and the complexation of Cr(III) by oxygen-containing functional groups of MCSBC. The regeneration studies showed that MCSBC kept 80% of its initial Cr(VI) adsorption capacity in the cycle. All the findings suggest that this novel magnetic biochar could be used in the field of Cr(VI)-containing wastewater treatment.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mohsina Ahmed ◽  
Abu Nasar

Background: Due to an abrupt increase in the contamination of freshwater systems by dye-containing wastewater, there is an urgent need to find robust and greener adsorbents for the elimination of dyes from the contaminated water. As the dyes not only change the appearance of water but are also a cause of many serious problems, which can be some time mutagenic and carcinogenic. Methods: This research paper is based on the use of adsorbent made from the peel of jackfruit (POJ). The adsorbent derived from agriculture waste was low cost and efficient for the elimination of methylene blue (MB) dye from aqueous media. Batch adsorption experiments were accompanied by varying the pH of the solution, contact time, POJ dosage, and initial MB concentration. Results: It was seen that adsorption of MB onto Jackfruit peel adsorbent follows pseudo-second-order (PSO) kinetics and Langmuir isotherm with maximum biosorption capacity (qm) of 232.55 mg/g. The thermodynamic study revealed that the adsorption was spontaneous, endothermic, and associated with the rise in entropy. Conclusion: In view of the low-cost and promising adsorption efficiency, the present investigation submits that that POJ is novel and economically feasible adsorbent for the removal of MB from aqueous solutions.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giannin Mosoarca ◽  
Cosmin Vancea ◽  
Simona Popa ◽  
Marius Gheju ◽  
Sorina Boran

Abstract In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g−1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document