A New Approach to the Synthesis of Transition Metal Phosphide Nanocrystallites (MoP, MoP2, Cu3P and CuP2) by Using Reaction Under Autogenic Pressure at Elevated Temperatures (RAPET) Technique

2016 ◽  
Vol 16 (02) ◽  
pp. 1650030 ◽  
Author(s):  
P. P. George ◽  
I. Genish ◽  
Shirly ben-david Maklouf ◽  
Y. Koltypin ◽  
A. Gedanken

The reaction under autogenic pressure at elevated temperature (RAPET) technique is proposed for synthesizing a series of metal phosphide nanoparticles such as MoP, MoP2, Cu3P and CuP2 at 850[Formula: see text]C for 3.50[Formula: see text]h by reacting selectively the transition metal powders with elemental phosphorus. The obtained products are characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is suggested based on the experimental results.

2010 ◽  
Vol 65 (8) ◽  
pp. 1033-1037 ◽  
Author(s):  
Sridhar Komarneni ◽  
Young Dong Noh ◽  
Joo Young Kim ◽  
Seok Han Kim ◽  
Hiroaki Katsuki

Anatase and Ca, Sr and Ca0.5Sr0.5 hydroxyapatites were synthesized by conventional-hydrothermal (C-H) as well asmicrowave-hydrothermal (M-H)methods.Microwave-assisted reactions led to accelerated syntheses of anatase but no such acceleration of reactions could be detected with the syntheses of hydroxyapatites because the crystallization of the latter materials occurred at very low temperature. Cu and Au metal powders were produced by using glucose, fructose or sucrose as reducing agents under C-H conditions at 160 ℃, where fructose and sucrose were found to be stronger reducing agents than glucose. The crystallinity of all the powders was characterized by powder X-ray diffraction, and morphology and particle sizes were determined by scanning or transmission electron microscopy


2002 ◽  
Vol 755 ◽  
Author(s):  
Susanthri C. Perera ◽  
Stephanie L. Brock

ABSTRACTThe formation of single phase FeP nanocrystals has been achieved by the reaction of Fe(III) salts (iron(III)acetylacetonate (Fe(acac)3) and iron(III)chloride (FeCl3)) with tris(trimethylsilyl)phosphine in trioctylphosphine oxide (TOPO)/trioctylphosphine (TOP) at elevated temperatures. The sizes of nanoparticles formed differ markedly depending on the initial iron salt used. Use of Fe(acac)3 always resulted in comparatively bigger particle formation (∼5 nm) while FeCl3 forms much smaller particles (∼1 nm) as confirmed by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM).


2004 ◽  
Vol 848 ◽  
Author(s):  
James V. Marzik ◽  
Raymond J. Suplinskas ◽  
William J. Croft ◽  
Warren J. MoberlyChan ◽  
John D. DeFouw ◽  
...  

ABSTRACTBoron fibers made by a commercial chemical vapor deposition (CVD) process have been used as precursors for the formation of magnesium diboride (MgB2) superconducting wires. Prior to a reaction with magnesium, the addition of dopants such as carbon and titanium to the boron fiber has been shown to enhance the superconducting properties of MgB2. These dopants also influence the kinetics of the reaction with magnesium. In this study, the effect of carbon dopant additions on the microstructure of boron fibers was investigated using powder x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, bundles of boron fibers were pressure infiltrated with molten magnesium and reacted at elevated temperatures. The microstructure and microchemistry of the fiber-metal interfaces were investigated by TEM and energy dispersive x-ray analysis (EDS).


2010 ◽  
Vol 113-116 ◽  
pp. 1036-1039
Author(s):  
Li Ying Li ◽  
Wen Hua Song ◽  
Jie Lian ◽  
Jin Hua Zhang

By a environmentally friendly method with the control of anionic amino acid surfactant N-lauroylsarcosine sodium (Sar-Na), hydroxyapatite (HAP) nanoplates were synthesized and the adsorption behavior of bovine serum albumin (BSA) were carefully studied. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Results showed that hydroxyapatite nanocrystals with lengths of 100 nm, a width of 10 nm and a high aspect ratio (10:1) were obtained. Results of UV-Vis spectrum indicate that prepared hydroxyapatite nanoplates can be effectively adsorbed BSA. The current work provides a new approach to produce biomaterials.


Author(s):  
Minh Nhat Dang ◽  
Do Nhat Minh ◽  
Le Ngoc Trung ◽  
Nguyen Thanh Hai ◽  
Le Trong Lu ◽  
...  

We herein introduce a new approach to synthesize MoO2/graphene composites via plasma-enhanced electrochemical exfoliation process. Our samples were prepared by electrifying graphite rods in (NH4)2Mo7O24 solution under a DC voltage of 70V. By controlling the experimental parameters such as the initial ratio of [Mo7O24]2– precursor, the current and time, we can modify the size and the size distribution of MoO2 nanoparticles on graphene sheets. The composites were characterized with Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray Diffraction and Raman Spectroscopy.  


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Sign in / Sign up

Export Citation Format

Share Document