A probabilistic version of Sankoff’s maximum parsimony algorithm

2020 ◽  
Vol 18 (01) ◽  
pp. 2050004
Author(s):  
Gábor Balogh ◽  
Stephan H. Bernhart ◽  
Peter F. Stadler ◽  
Jana Schor

The number of genes belonging to a multi-gene family usually varies substantially over their evolutionary history as a consequence of gene duplications and losses. A first step toward analyzing these histories in detail is the inference of the changes in copy number that take place along the individual edges of the underlying phylogenetic tree. The corresponding maximum parsimony minimizes the total number of changes along the edges of the species tree. Incorrectly determined numbers of family members however may influence the estimates drastically. We therefore augment the analysis by introducing a probabilistic model that also considers suboptimal assignments of changes. Technically, this amounts to a partition function variant of Sankoff’s parsimony algorithm. As a showcase application, we reanalyze the gain and loss patterns of metazoan microRNA families. As expected, the differences between the probabilistic and the parsimony method is moderate, in this limit of [Formula: see text], i.e. very little tolerance for deviations from parsimony, the total number of reconstructed changes is the same. However, we find that the partition function approach systematically predicts fewer gains and more loss events, showing that the data admit co-optimal solutions among which the parsimony approach selects biased representatives.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi123-vi124
Author(s):  
Sybren Maas ◽  
Damian Stichel ◽  
Thomas Hielscher ◽  
Philipp Sievers ◽  
Anna Berghoff ◽  
...  

Abstract PURPOSE Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from cases with benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for the individual patient is of pivotal importance in clinical management. However, only biomarkers for highly aggressive tumors are established at present (CDKN2A/B and TERT), while no molecularly-based stratification exists for the broad spectrum of low- and intermediate-risk meningioma patients. PATIENTS AND METHODS DNA methylation data and copy-number information were generated for 3,031 meningiomas of 2,868 individual patients, with mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNV), mutations and WHO grading were comparatively analyzed. Prediction power for outcome of these parameters was assessed in an initial retrospective cohort of 514 patients, and validated on a retrospective cohort of 184, and on a prospective cohort of 287 multi-center cases, respectively. RESULTS Both CNV and methylation family- (MF)-based subgrouping independently resulted in an increase in prediction accuracy of risk of recurrence compared to the WHO classification (c-indexes WHO 2016, CNV, and MF 0.699, 0.706 and 0.721, respectively). Merging all independently powerful risk stratification approaches into an integrated molecular-morphological score resulted in a further, substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference p=0.005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (HR 4.56 [2.97;7.00], 4.34 [2.48;7.57] and 3.34 [1.28; 8.72] for discovery, retrospective, and prospective validation cohort, respectively). CONCLUSIONS Merging these layers of histological and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision-making for meningioma patients on the basis of robust outcome prediction.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000926 ◽  
Author(s):  
Young Mi Kwon ◽  
Kevin Gori ◽  
Naomi Park ◽  
Nicole Potts ◽  
Kate Swift ◽  
...  

Devil facial tumour 1 (DFT1) is a transmissible cancer clone endangering the Tasmanian devil. The expansion of DFT1 across Tasmania has been documented, but little is known of its evolutionary history. We analysed genomes of 648 DFT1 tumours collected throughout the disease range between 2003 and 2018. DFT1 diverged early into five clades, three spreading widely and two failing to persist. One clade has replaced others at several sites, and rates of DFT1 coinfection are high. DFT1 gradually accumulates copy number variants (CNVs), and its telomere lengths are short but constant. Recurrent CNVs reveal genes under positive selection, sites of genome instability, and repeated loss of a small derived chromosome. Cultured DFT1 cell lines have increased CNV frequency and undergo highly reproducible convergent evolution. Overall, DFT1 is a remarkably stable lineage whose genome illustrates how cancer cells adapt to diverse environments and persist in a parasitic niche.


Author(s):  
Gancho Ganchev

The aim of the chapter is to introduce money as the necessary link between micro and macro levels. The author starts with a critical appraisal of the neoclassical monetary theory paradigm. The opening argument is that it is not possible to separate the relative prices and price level formation. The interdependence between the price of money and the prices of all the other goods leads to the conclusion of the gross complementarity of money what violates the gross substitutability principle. Further, it is argued that the function of money as medium of exchange in a decentralized monetary economy is only possible under cyclic sequencing of bilateral exchanges. The latter means that new macroeconomic constraint is added to the conventional micro equilibrium requirements. The macro constraint makes possible to derive the individual utility functions from macro variables such as the income velocity of money and the price level. The macro constraint allows also for optimal solutions under the second-best conditions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 420-420
Author(s):  
Christian Flotho ◽  
Susana C. Raimondi ◽  
James R. Downing

Abstract We have demonstrated that expression profiling of leukemic blasts can accurately identify the known prognostic subtypes of ALL, including T-ALL, E2A-PBX1, TEL-AML1, MLL rearrangements, BCR-ABL, and hyperdiploid >50 chromosomes (HD>50). Interestingly, almost 70% of the genes that defined HD>50 ALL localized to chromosome 21 or X. To further explore the relationship between gene expression and chromosome dosage, we compared the expression profiles obtained using the Affymetrix U133A&B microarrays of 17 HD>50 ALLs to 78 diploid or pseudodiploid ALLs. Our analysis demonstrated that the average expression level for all genes on a chromosome could be used to predict chromosome copy numbers. Specifically, the copy number for each chromosome calculated by gene expression profiling predicted the numerical chromosomal abnormalities detected by standard cytogenetics. For chromosomes that were trisomic in HD>50 ALL, the mean chromosome-specific gene expression level was increased approximately 1.5-fold compared to that observed in diploid or pseudodiploid ALL cases. Similarly, for chromosome 21 and X, the mean chromosome-specific gene expression levels were increased approximately 2-fold, consistent with a duplication of the active X chromosome and tetrasomy of chromosome 21, a finding verified by standard cytogenetics in >90% of the HD>50 cases. These finding indicate that the aberrant gene expression levels seen in HD>50 ALL primarily reflect gene dosages. Importantly, we did not observe any clustering of aberrantly expressed genes across the duplicated chromosomes, making regional gain or loss of genomic material unlikely. Paradoxically, however, a more detailed analysis revealed a small but statistically significant number of genes on the trisomic/tetrasomic chromosomes whose expression levels were markedly reduced when compared to that seen in diploid or pseudodiploid leukemic samples. Using the Statistical Analysis of Microarrays (SAM) algorithm we identified 20 genes whose expression was reduced >2-fold despite having an increase in copy number. Interestingly, included within this group are several known tumor suppressors, including AKAP12, which is specifically silenced by methylation in fos-transformed cells, and IGF2R and IGFBP7, negative regulators of insulin-like growth factor signaling. In addition to the silencing of a small subset of genes, we also identified 21 genes on these chromosomes whose expression levels were markedly higher (>3-fold) than would be predicted solely based on copy number. Although the mechanism responsible for their increased expression remains unknown, included in this group are four genes involved in signal transduction (IL3RA, IL13RA1, SNX9, and GASP) and a novel cytokine, C17, whose expression is normally limited to CD34+ hematopoietic progenitors. Taken together, these data suggest that aberrant growth in HD>50 ALL is in part driven by increased expression of a large number of genes secondary to chromosome duplications, coupled with a further enhanced expression of a limited number of growth promoting genes, and the specific silencing of a small subset of negative growth regulatory genes. Understanding the mechanisms responsible for the non-dosage related changes in gene expression should provide important insights into the pathology of HD>50 ALL.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Norio Takahashi ◽  
Yasunari Satoh ◽  
Keiko Sasaki ◽  
Yuko Shimoichi ◽  
Keiko Sugita ◽  
...  

Segmental copy-number variations (CNVs) may contribute to genetic variation in humans. Reports of the existence and characteristics of CNVs in a large Japanese cohort are quite limited. We report the data from a large Japanese population. We conducted population screening for 213 unrelated Japanese individuals using comparative genomic hybridization based on a bacterial artificial chromosome microarray (BAC-aCGH). We summarize the data by focusing on highly polymorphic CNVs in ≥5.0% of the individual, since they may be informative for demonstrating the relationships between genotypes and their phenotypes. We found a total of 680 CNVs at 16 different BAC-regions in the genome. The majority of the polymorphic CNVs presented on BAC-clones that overlapped with regions of segmental duplication, and the majority of the polymorphic CNVs observed in this population had been previously reported in other publications. Some of the CNVs contained genes which might be related to phenotypic heterogeneity among individuals.


2008 ◽  
Vol 18 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Jan O Korbel ◽  
Philip M Kim ◽  
Xueying Chen ◽  
Alexander Eckehart Urban ◽  
Sherman Weissman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document