scholarly journals Torsion gravity for Dirac fields

2017 ◽  
Vol 14 (03) ◽  
pp. 1750037 ◽  
Author(s):  
Luca Fabbri

In this paper, we will take into account the most complete background with torsion and curvature, providing the most exhaustive coupling for the Dirac field, we will discuss the integrability of the interaction of the matter field and the reduction of the matter field equations.

2016 ◽  
Vol 13 (06) ◽  
pp. 1650078 ◽  
Author(s):  
Luca Fabbri

We consider generally relativistic gauge transformations for the spinorial fields finding two mutually exclusive but together exhaustive classes in which fermions are placed adding supplementary information to the results obtained by Lounesto, and identifying quantities analogous to the momentum vector and the Pauli–Lubanski axial vector. We discuss how our results are similar to those obtained by Wigner by taking into account the system of Dirac field equations. We will investigate the consequences for the dynamics and in particular we shall address the problem of getting the nonrelativistic approximation in a consistent way. We are going to comment on extensions.


A Green function formulation of the Dirac field in curved space is considered in the cases where the mass is constant and where it is regarded as a direct particle field in the manner of Hoyle & Narlikar (1964 c ). This description is equivalent to, and in some ways more satisfactory than, that given in terms of a suitable Lagrangian, in which the Dirac or the mass field is regarded as independent of the geometry. The essential idea is to define the Dirac or the mass field in terms of certain Green functions and sources so that the field equations are satisfied identically, and then to obtain the contribution of these fields to the metric field equations from the variation of a suitable action that is defined in terms of the Green functions and sources.


2010 ◽  
Vol 25 (08) ◽  
pp. 1661-1698 ◽  
Author(s):  
ANZHONG WANG ◽  
N. O. SANTOS

In this paper, we present a systematical study of braneworlds of string theory on S1/Z2. In particular, starting with the toroidal compactification of the Neveu–Schwarz/Neveu–Schwarz sector in D + d dimensions, we first obtain an effective D-dimensional action, and then compactify one of the D - 1 spatial dimensions by introducing two orbifold branes as its boundaries. We divide the whole set of the gravitational and matter field equations into two groups, one holds outside the two branes, and the other holds on them. By combining the Gauss–Codacci and Lanczos equations, we write down explicitly the general gravitational field equations on each of the two branes, while using distribution theory we express the matter field equations on the branes in terms of the discontinuities of the first derivatives of the matter fields. Afterwards, we address three important issues: (i) the hierarchy problem; (ii) the radion mass; and (iii) the localization of gravity, the four-dimensional Newtonian effective potential and the Yukawa corrections due to the gravitational high-order Kaluza–Klein (KK) modes. The mechanism of solving the hierarchy problem is essentially the combination of the large extra dimension and warped factor mechanisms together with the tension coupling scenario. With very conservative arguments, we find that the radion mass is of the order of 10-2 GeV. The gravity is localized on the visible brane, and the spectrum of the gravitational KK modes is discrete and can be of the order of TeV. The corrections to the four-dimensional Newtonian potential from the higher order of gravitational KK modes are exponentially suppressed and can be safely neglected in current experiments. In an appendix, we also present a systematical and pedagogical study of the Gauss–Codacci equations and Israel's junction conditions across a (D - 1)-dimensional hypersurface, which can be either spacelike or timelike.


2016 ◽  
Vol 13 (05) ◽  
pp. 1630005
Author(s):  
Roberto Giambò ◽  
Fabio Giannoni ◽  
Giulio Magli

The final state of spherical gravitational collapse can be analyzed applying to the geodesic equations governing the behavior of light rays near the singularity relatively simple but powerful techniques of nonlinear ordinary differential equations. In this way, explicit use of exact solutions of Einstein’s field equations is not necessary, and results can be obtained for wide equations of state of the collapsing matter field.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Miao He ◽  
Ziliang Wang ◽  
Chao Fang ◽  
Daoquan Sun ◽  
Jianbo Deng

Einstein’s equation could be interpreted as the first law of thermodynamics near the spherically symmetric horizon. Through recalling the Einstein gravity with a more general static spherical symmetric metric, we find that the entropy would have a correction in Einstein gravity. By using this method, we investigate the Eddington-inspired Born-Infeld (EiBI) gravity. Without matter field, we can also derive the first law in EiBI gravity. With an electromagnetic field, as the field equations have a more general spherically symmetric solution in EiBI gravity, we find that correction of the entropy could be generalized to EiBI gravity. Furthermore, we point out that the Einstein gravity and EiBI gravity might be equivalent on the event horizon. At last, under EiBI gravity with the electromagnetic field, a specific corrected entropy of black hole is given.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450003 ◽  
Author(s):  
SVEN ZSCHOCKE

The linearized field equations of general relativity in harmonic coordinates are given by an inhomogeneous wave equation. In the region exterior to the matter field, the retarded solution of this wave equation can be expanded in terms of 10 Cartesian symmetric and tracefree (STF) multipoles in post-Minkowskian approximation. For such a multipole decomposition only three and rather weak assumptions are required: (1) No-incoming-radiation condition. (2) The matter source is spatially compact. (3) A spherical expansion for the metric outside the matter source is possible. During the last decades, the STF multipole expansion has been established as a powerful tool in several fields of gravitational physics: celestial mechanics, theory of gravitational waves and in the theory of light propagation and astrometry. But despite its formidable importance, an explicit proof of the fundamental theorem of STF multipole expansion has not been presented so far, while only some parts of it are distributed into several publications. In a technical but more didactical form, an explicit and detailed mathematical proof of each individual step of this important theorem of STF multipole expansion is represented.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Kucukakca ◽  
Yusuf Sucu

We consider a gravitational theory including a Dirac field that is nonminimally coupled to gravity in 2 + 1 dimensions. Noether gauge symmetry approach can be used to fix the form of coupling functionF(Ψ)and the potentialV(Ψ)of the Dirac field and to obtain a constant of motion for the dynamical equations. In the context of (2 + 1)-dimensional gravity, we investigate cosmological solutions of the field equations using these forms obtained by the existence of Noether gauge symmetry. In this picture, it is shown that, for the nonminimal coupling case, the cosmological solutions indicate both an early-time inflation and late-time acceleration for the universe.


Gravity and electromagnetism are two sides of the same coin, which is the clue of this unification. Gravity and electromagnetism are representing by two mathematical structures, symmetric and antisymmetric respectively. Einstein gravitational field equation is the symmetric mathematical structure. Electrodynamics Lagrangian is three parts, for electromagnetic field, Dirac field and interaction term. The definition of canonical energy momentum tensor was used for each term in Electrodynamics Lagrangian to construct the antisymmetric mathematical structure. Symmetric and antisymmetric gravitational field equations are two sides of the same Lagrangian


Author(s):  
Caglar Pala ◽  
Ertan Kok ◽  
Ozcan Sert ◽  
Muzaffer Adak

After summarizing the basic concepts for the exterior algebra, we first discuss the gauge structure of the bundle over base manifold for deciding the form of the gravitational sector of the total Lagrangian in any dimensions. Then we couple minimally a Dirac spinor field to our gravitational Lagrangian 2-form which is quadratic in the nonmetricity and both linear and quadratic in the curvature in two dimensions. Subsequently, we obtain field equations by varying the total Lagrangian with respect to the independent variables. Finally, we find some classes of solutions of the vacuum theory and then a solution of the Dirac equation in a specific background and analyze them.


2018 ◽  
Vol 16 (04) ◽  
pp. 449-524
Author(s):  
Alexei Iantchenko

We provide the full asymptotic description of the quasi-normal modes (resonances) in any strip of fixed width for Dirac fields in slowly rotating Kerr–Newman–de Sitter black holes. The resonances split in a way similar to the Zeeman effect. The method is based on the extension to Dirac operators of techniques applied by Dyatlov in [Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole, Commun. Math. Phys. 306(1) (2011) 119–163; Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes, Ann. Henri Poincaré 13(5) (2012) 1101–1166] to the (uncharged) Kerr–de Sitter black holes. We show that the mass of the Dirac field does not have an effect on the two leading terms in the expansions of resonances. We give an expansion of the solution of the evolution equation for the Dirac fields in the outer region of the slowly rotating Kerr–Newman–de Sitter black hole which implies the exponential decay of the local energy. Moreover, using the [Formula: see text]-normal hyperbolicity of the trapped set and applying the techniques from [Asymptotics of linear waves and resonances with applications to black holes, Commun. Math. Phys. 335 (2015) 1445–1485; Resonance projectors and asymptotics for [Formula: see text]-normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015) 311–381], we give location of the resonance free band and the Weyl-type formula for the resonances in the band near the real axis.


Sign in / Sign up

Export Citation Format

Share Document