Magnetized string cosmological models of accelerated expansion of the Universe in f(R,T) theory of gravity

2018 ◽  
Vol 15 (05) ◽  
pp. 1850076 ◽  
Author(s):  
Anirudh Pradhan ◽  
Rekha Jaiswal

A class of spatially homogeneous and anisotropic Bianchi-V massive string models have been studied in the modified [Formula: see text]-theory of gravity proposed by Harko et al. [Phys. Rev. D 84:024020, 2011] in the presence of magnetic field. For a specific choice of [Formula: see text], where [Formula: see text] and [Formula: see text]; [Formula: see text], [Formula: see text] being arbitrary parameters, solutions of modified gravity field equations have been generated. To find the deterministic solution of the field equations, we have considered the time varying deceleration parameter which is consistent with observational data of standard cosmology (SNIa, BAO and CMB). As a result to study the transit behavior of Universe, we consider a law of variation for the specifically chosen scale factor, which yields a time-dependent deceleration parameter comprising a class of models that depicts a transition of the Universe from the early decelerated phase to the recent accelerating phase. In this context, for the model of the Universe, the field equations are solved and corresponding cosmological aspects have been discussed. The Energy conditions in this modified gravity theory are also studied. Stability analysis of the solutions through cosmological perturbation is performed and it is concluded that the expanding solution is stable against the perturbation with respect to anisotropic spatial direction. Some physical and geometric properties of the models are also discussed.

2016 ◽  
Vol 25 (04) ◽  
pp. 1650040 ◽  
Author(s):  
A. Abdolmaleki ◽  
T. Najafi

Modified gravity (MG) and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss–Bonnet (GB) gravity or [Formula: see text]-gravity. We consider a spatially FRW universe filled with the pressureless matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable [Formula: see text] models, we first numerically solve the set of differential equations governing the dynamics of [Formula: see text]-gravity. Then, we obtain the evolutions of the Hubble parameter, the GB curvature invariant term, the density and equation of state (EoS) parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected [Formula: see text] models, we conclude that both models have a stable de Sitter attractor. The EoS parameters behave quite similar to those of the [Formula: see text]CDM model in the radiation/matter dominated epochs, then they enter the phantom region before reaching the de Sitter attractor with [Formula: see text]. The deceleration parameter starts from the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected for both models during the standard radiation/matter dominated epochs. Thereafter when the universe becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250100 ◽  
Author(s):  
A. KHODAM-MOHAMMADI ◽  
M. MALEKJANI ◽  
M. MONSHIZADEH

In this work, we reconstruct the f(R) modified gravity for different ghost and generalized-ghost dark energy (DE) models in FRW flat universe, which describes the accelerated expansion of the universe. The equation of state and deceleration parameter of reconstructed f(R) gravity have been calculated. The equation of state and deceleration parameter of reconstructed f(R)-ghost/generalized-ghost DE, have been calculated. We show that the corresponding f(R) gravity of ghost/generalized-ghost DE model can behave like phantom or quintessence. Also the transition between deceleration to acceleration regime is indicated by deceleration parameter diagram for reconstructed f(R) generalized-ghost DE model.


2018 ◽  
Vol 33 (33) ◽  
pp. 1850193 ◽  
Author(s):  
P. K. Sahoo ◽  
S. K. Tripathy ◽  
Parbati Sahoo

The phenomenon of accelerated expansion of the present universe and a cosmic transit aspect is explored in the framework of a modified gravity theory known as f(R, T) gravity (where R is the Ricci scalar and T is the trace of the energy–momentum tensor of the matter content). The cosmic transit phenomenon signifies a signature flipping behavior of the deceleration parameter. We employ a periodic varying deceleration parameter and obtained the exact solution of field equations. The dynamical features of the model including the oscillatory behavior of the EOS parameter are studied. We have also explored the obvious violation of energy–momentum conservation in f(R, T) gravity. The periodic behavior of energy conditions for the model are also discussed with a wide range of the free parameters.


2018 ◽  
Vol 15 (07) ◽  
pp. 1850115 ◽  
Author(s):  
Rishi Kumar Tiwari ◽  
Aroonkumar Beesham ◽  
Bhupendra Shukla

A study is made of the LRS Bianchi type-I cosmological model in [Formula: see text] modified gravity theory. Einstein’s field equations in [Formula: see text] gravity are solved by taking [Formula: see text] and the deceleration parameter [Formula: see text] to be a linear function of the Hubble parameter [Formula: see text]. The universe begins with an initial singular state and changes with time from an early deceleration phase to a late time acceleration phase. We have found that the jerk parameter [Formula: see text] in the model approaches that of the [Formula: see text] model at late times. We also discuss the physical and geometrical properties of the model.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850082 ◽  
Author(s):  
M. Farasat Shamir ◽  
Saeeda Zia

Current study highlights the physical characteristics of charged anisotropic compact stars by exploring some exact solutions of modified field equations in [Formula: see text] gravity. A comprehensive analysis is performed from the obtained solutions regarding stability, energy conditions, regularity, sound velocity and compactness. These solutions can be referred to model the compact celestial entities. In particular, a compact star named, [Formula: see text] has been modeled which indicates that current solution fits and is in conformity to the observational data as well. A useful and interesting fact from this model arises that relative difference between two forces of anisotropic pressure and electromagnetic force may occur inside the aforementioned compact star. This is another mechanism which is essential for stability of the compact object and prevent stellar object to annihilate.


2014 ◽  
Vol 92 (9) ◽  
Author(s):  
P.K. SAHOO ◽  
B. Mishra

A five dimensional Kaluza-Klein space time is considered with wet dark fluid (WDF) source in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D \textbf{84}, 024020, (2011)). A new equation of state in the form of WDF has been used for dark energy (DE) component of the universe. It is modeled on the equation of state p=\omega(\rho-\rho^*) which can be describing a liquid, for example water. The exact solutions to the corresponding field equations are obtained for power law and exponential law of the volumetric expansion. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and the very late time of the universe. This model obtained here shows that even in the presence of wet dark fluid, the universe indicates accelerated expansion of the universe.


2014 ◽  
Vol 92 (9) ◽  
pp. 1062-1067 ◽  
Author(s):  
P. K. Sahoo ◽  
B. Mishra

In this paper, we have investigated the five-dimensional Kaluza–Klein space time with wet dark fluid (WDF), which is a candidate for dark energy (DE), in the framework of f(R, T) gravity. R and T denote the Ricci scalar and the trace of the energy–momentum tensor, respectively (Harko et al. Phys. Rev. D, 84, 024020 (2011)). We have used equation of state in the form of WDF for the DE component of the universe. It is modeled on the equation of state p = ω(ρ – ρ*). With the help of the power law and exponential law of volumetric expansion, we have derived the exact solutions of the corresponding field equations. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and very late time of the universe. It is concluded that the model obtained here shows that even in the presence of WDF, the universe indicates accelerated expansion of the universe.


2008 ◽  
Vol 23 (06) ◽  
pp. 909-917 ◽  
Author(s):  
K. D. PUROHIT ◽  
YOGESH BHATT

A five-dimensional FRW-type Kaluza–Klein cosmological model is taken to study the role of extra dimension in the expansion of the universe. Relation between scale factors corresponding to conventional four dimensions and the extra dimension has been established. Field equations are solved in order to find out the effect of pressure corresponding to these scale factors. Conditions for accelerated expansion are derived.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040037
Author(s):  
Irina Bormotova ◽  
Elena Kopteva ◽  
Mariia Churilova ◽  
Zdenek Stuchlik

We present a special case of the Stephani solution with spherical symmetry while considering different values of spatial curvature. We investigate the dynamics of the universe evolution in our model, build the R–T-regions for the resulting spacetime and analyze the behavior of the deceleration parameter. The singularities of the model are also discussed. The geometry of the spatial part of the obtained solution is explored.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950098 ◽  
Author(s):  
P. H. R. S. Moraes ◽  
W. de Paula ◽  
R. A. C. Correa

Wormholes (WHs) are a solution for General Relativity field equations which characterize a passage or tunnel that connects two different regions of spacetime and is filled by some sort of exotic matter that does not satisfy the energy conditions. On the other hand, it is known that in extended theories of gravity, the extra degrees of freedom once provided may allow the energy conditions to be obeyed and, consequently, the matter content of the WH to be nonexotic. In this work, we obtain, as a novelty in the literature, solutions for charged WHs in the [Formula: see text]-extended theory of gravity. We show that the presence of charge in these objects may be a possibility to respect some stability conditions for their metric. Also, remarkably, the energy conditions are respected in the present approach. In addition, we argue that our framework can be very useful to study the possibility of evolving [Formula: see text] and [Formula: see text]-dimensional WH spacetime within the context of nonlinear electrodynamics, which open a new window to probe the physical quantities in a WH-type solution.


Sign in / Sign up

Export Citation Format

Share Document