Unexpected isolation and characterization of a chloroiron complex with a 10-acetylcorrole ligand

2008 ◽  
Vol 12 (10) ◽  
pp. 1111-1117 ◽  
Author(s):  
Martin Bröring ◽  
Silke Köhler

The chloroiron complex of 10-acetyl-2,3,7,8,12,13,17,18-octaethylcorrole was isolated as an unexpected product from an attempted preparation of chloroiron-2,2'-bidipyrrin when acetone was used in the solvent mixture. In the molecular structure derived from X-ray crystallographic analysis the orthogonal arrangement of the acetyl group with the corrole macrocycle is clearly apparent, and the UV-vis spectrum of the compound indicates only a small electronic influence of the acetyl group on the corrole π-system. The paramagnetic 1 H NMR spectrum taken at ambient temperature shows two signal sets in a ratio of 2.2:1, indicating two stable orientations of the acetyl group in solution. Attempts to prepare the species from chloroiron-2,2'-bidipyrrin with iron(III)chloride in acetone were successful but gave inconsistent and generally low yields. A rationale for the formation of the new corrole is proposed.

2009 ◽  
Vol 13 (02) ◽  
pp. 215-222 ◽  
Author(s):  
Motoki Toganoh ◽  
Takayoshi Hihara ◽  
Kentaro Yonekura ◽  
Yuichi Ishikawa ◽  
Hiroyuki Furuta

A unique class of azo porphyrin, 5,10,15,20-tetraphenyl-21-phenylazo-(2-aza-21-carbaporphyrin 1, in which an azophenyl group is embedded in N -confused porphyrin, was synthesized and characterized by 1 H NMR, 13 C NMR, UV-vis absorption, MS, and X-ray crystallographic analysis. Synthesis of 1 was achieved through a coupling reaction of 21-amino N -confused tetraphenylporphyrin with nitrosobenzene and subsequent deoxygenation of resulting azoxy derivative with a trioxo rhenium(VII) N -fused porphyrinato catalyst. The azo-conjugate molecule was exclusively obtained as a trans-isomer and no isomerization to the cis-isomer was observed under thermal or photoirradiation. The absorption spectrum of 1 shows a moderate red-shift due to the effective interaction between the porphyrinic π-system and the connecting azophenyl group. Upon protonation, this effect is essentially lost as a result of removing degeneracy of LUMO and LUMO+1.


2018 ◽  
Vol 96 (6) ◽  
pp. 526-533 ◽  
Author(s):  
Khatera Hazin ◽  
Derek P. Gates

Treating PCl5 with C12H8Li2, generated from either C12H10, C12H8Br2, or C12H8I2, affords three products in different ratios depending on the source of the lithiated biphenyl. Hellwinkel’s salt [P(C12H8)2][P(C12H8)3] ([1][2]) and another product [P(C12H8)(C24H16)][P(C12H8)3] ([1′][2]) were obtained by reacting PCl5 with 2,2′-dilithiobiphenyl [Route A: 2.5 equiv.; obtained from biphenyl, n-BuLi, and TMEDA; Route B: 3.0 equiv.; obtained from 2,2′-diiodobiphenyl and n-BuLi; Route C: 4.0 equiv.; obtained from 2,2′-dibromobiphenyl and n-BuLi]. The synthesis, isolation, and characterization of the chiral spiro-compound [1′][2] and the characterization of the pentavalent phosphorane [P(C12H8)2(C12H9)] (3) are reported. The complex [1′][2] was characterized by 31P{1H} NMR spectroscopy, X-ray crystallography, and mass spectrometry. The pentavalent compound (3) was characterized by 31P{1H} NMR spectroscopy and X-ray crystallography.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 213
Author(s):  
Xiao-Shan Shi ◽  
Yin-Ping Song ◽  
Ling-Hong Meng ◽  
Sui-Qun Yang ◽  
Dun-Jia Wang ◽  
...  

Carotane sesquiterpenes are commonly found in plants but are infrequently reported in the fungal kingdom. Chemical investigation of Trichoderma virens QA-8, an endophytic fungus associated with the inner root tissue of the grown medicinal herb Artemisia argyi H. Lév. and Vaniot, resulted in the isolation and characterization of five new carotane sesquiterpenes trichocarotins I–M (1–5), which have diverse substitution patterns, and seven known related analogues (6–12). The structures of these compounds were established on the basis of a detailed interpretation of their NMR and mass spectroscopic data, and the structures including the relative and absolute configurations of compounds 1–3, 5, 9, and 10 were confirmed by X-ray crystallographic analysis. In the antibacterial assays, all isolates exhibited potent activity against Escherichia coli EMBLC-1, with MIC values ranging from 0.5 to 32 µg/mL, while 7β-hydroxy CAF-603 (7) strongly inhibited Micrococcus luteus QDIO-3 (MIC = 0.5 µg/mL). Structure-activity relationships of these compounds were discussed. The results from this study demonstrate that the endophytic fungus T. virens QA-8 from the planted medicinal herb A. argyi is a rich source of antibacterial carotane sesquiterpenes, and some of them might be interesting for further study to be developed as novel antibacterial agents.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 814-820
Author(s):  
Yingying Jia ◽  
Ling Xu ◽  
Bangshao Yin ◽  
Mingbo Zhou ◽  
Jianxin Song

Beginning with 5,10,15-triarylporphyrin-nickel complex, five meso-to-meso directly linked porphyrin-diazaporphyrin triads were successfully prepared for the first time through a series of reactions including formylation via Vilsmeier–Haack reaction, condensation with pyrrole, bromination with [Formula: see text]-Bromosuccinimide (NBS), oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), metal-templated cyclization of dibromodipyrrin-metal complexes with NaN[Formula: see text] and demetalization. All these triads were comprehensively characterized by [Formula: see text]H NMR, high-resolution mass spectrometry and UV-vis absorption. In addition, the structure of compound 6Ni was unambiguously determined by X-ray diffraction analysis, which showed that the two dihedral angles are both 86.65 (4)[Formula: see text] between each mean plane of porphyrin and that of central diazaporphyrin The UV-vis absorption spectra disclosed that the longest wavelengths of Soret bands and Q bands for these triads were observed at 429 and 642 nm, respectively. In contrast to diazaporphyrin-porphyrin dyads, diazaporphyrin dimers and diazaporphyrin monomers reported previously the molar extinction coefficients, particularly for triad 8Ni are much higher.


2021 ◽  
pp. 004051752110154
Author(s):  
Zhihui Qin ◽  
Shuyuan Zhao ◽  
Liu Liu ◽  
Zhaohe Shi ◽  
Longdi Cheng ◽  
...  

Degumming is the dominant method for insolating lignocellulosic fibers in textile applications. Traditional alkaline degumming (TAL), as a common method, requires a high-concentration alkali and has been a severe challenge to the environment. In the research reported here, the possibility of innovative jute degumming by organic solvents 1-2 propylene glycol and a combination of additive green oxygen (GO-OS) was studied. The results revealed that fibers could be extracted by this system (under condition of 0.9% GO-OS, 180°C, 120 min), and obtained fibers with higher breaking tenacity (7.1 cN/dtex), yield (65.7%), breaking elongation (2.87%) and residual gum (11.7%), which all meet the requirement of the relevant Chinese Textile National Standards. Notably, the required reaction time (120 min) of the GO-OS system was 180 min shorter than that of the TAL method. Furthermore, the modifications introduced by the degumming effect on physicochemical aspects were characterized and confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. This study provides a promising degumming method for separating jute lignocellulose without acid and alkali consumption.


2000 ◽  
Vol 78 (3) ◽  
pp. 383-394
Author(s):  
Frank Bottomley ◽  
Victor Sanchez ◽  
Robert C Thompson ◽  
Olusola O Womiloju ◽  
Zhiqiang Xu

Reduction of [(η-C5Me5)MoCl(O)]2(μ-O) or (η-C5Me5)MoCl2(O) with sodium or magnesium amalgam, magnesium turnings, or tributyltin hydride produced [(η-C5Me5)Mo]4O7, with [(η-C5Me5)Mo(O)(μ-O)]2 as a co-product. [(η-C5Me5)Mo]4O7 was characterized by X-ray diffraction, mass spectrometry, 1H NMR and IR spectroscopies, and magnetism. Crystals of [(η-C5Me5)Mo]4O7 contained a tetrahedral [(η-C5Me5)Mo]4 unit (Mo-Mo = 2.909 (3) Å) with the Mo4O7 core having the structure Mo4(μ2-O(b))3(µ2-O(c))3(µ3-O(a)) (3). Microcrystalline samples of [(η-C5Me5)Mo]4O7 were paramagnetic over the temperature range 2-300 K, with an effective moment of 1.26 μB at 300 K. [(η-C5Me5)Mo]4O7 was also paramagnetic in chloroform solution, over the temperature range 223-298 K, with an effective moment of 1.43 µB at 298 K. The 1H NMR spectrum showed a broad resonance at 16.3 ppm (Δν 1/2 = 113 Hz) and two narrow resonances at 1.89 ppm and 1.69 ppm (Δν 1/2 = 5 Hz). The magnetism and NMR spectra showed that [(η-C5Me5)Mo]4O7 existed in two forms which were in equilibrium in solution. One form was paramagnetic (S = 1), with the Mo4O7 core having the geometry 3, and the other was diamagnetic (S = 0), with the Mo4O7 core having the geometry 4.Key words: cluster, cyclopentadienyl, molybdenum, oxide, paramagnetism.


2017 ◽  
Vol 46 (40) ◽  
pp. 14012-14020
Author(s):  
Kazuhiro Uemura ◽  
Masahiro Taoka

An intermediate compound of a tetranuclear Pt–Fe⋯Fe–Pt complex in the synthetic process to form a trinuclear Pt–Fe–Pt complex by mixing the “amidate-hanging” Pt mononuclear complex and iron sources was successfully isolated and characterized by single-crystal X-ray analysis and several physical measurements.


1995 ◽  
Vol 50 (8) ◽  
pp. 1222-1228 ◽  
Author(s):  
Hidenari Inoue ◽  
Hiromi Akahori ◽  
Yuri Ohno ◽  
Katsuo Nakazawa ◽  
Yoshimune Nonomura ◽  
...  

The adduct formation of iron(III) chlorophyll a with phosphines or phosphites has been studied by spectroscopic methods. The red-shift in the Soret and Q bands caused by the axial coordination of phosphine or phosphite to iron(III) chlorophyll a is an evidence for the autoreduction of the central iron(III) ion. The 31P{1H} NMR spectrum of bis-adducts measured in the presence of excess phosphine or phosphite ligands gave a single peak in the down field range compared to that of the corresponding free ligand. The ESR and X-ray photoelectron spectra have revealed that the central iron atom of the bis-adduct of iron chlorophyll a with phosphines or phosphites is divalent and in the low-spin state. The axial coordination of phosphine or phosphite influences the electronic configuration of the central iron atom and the macrocyclic chlorine ligand to induce the autoreduction of the central iron(III) ion.


2011 ◽  
Vol 15 (03) ◽  
pp. 197-201 ◽  
Author(s):  
Juanxia Yang ◽  
Jiaxun Jiang ◽  
Weiguang Fang ◽  
Xiaoxu Kai ◽  
Chuanjiang Hu ◽  
...  

5-(8-ethoxycarbonyl-1-naphthyl)-10,15,20-triphenyl porphyrin (ENTPP) has been synthesized in a one-pot reaction, and the corresponding chiral crystalline samples have been obtained by spontaneous resolution. 1 H NMR spectrum suggests it is mononaphthyl substituted species and an ethyl group is over the porphyrin plane. The structure has been further confirmed by X-ray crystallography. ENTPP·C6H14 (C57H50N4O2 ): monoclinic, P21, a = 10.707(2) Å, b = 12.203(2) Å, c = 17.858(4) Å, β = 103.06(3)°, V = 2272.8(8) Å3, Z = 2. The 8-position substituent, ester group, lies above the porphyrin plane and leads to the conformational chirality. The entire structure is built up with homochiral molecules, which leads to a chiral crystal through packing in P21 space group. Circular dichroism (CD) spectra have exhibited remarkable absorptions in the Soret band region, which further confirms the homochirality of the crystalline samples.


Sign in / Sign up

Export Citation Format

Share Document