How protoporphyrinogen IX oxidase inhibitors and transgenesis contribute to elucidate plant tetrapyrrole pathway

2019 ◽  
Vol 23 (04n05) ◽  
pp. 419-426 ◽  
Author(s):  
Veronica Ambrosini ◽  
Mohammad Issawi ◽  
Stéphanie Leroy-Lhez ◽  
Catherine Riou

Several families of herbicides, especially diphenyl ether (DPE) and pyrimidinedione, target the plant tetrapyrrole biosynthesis pathways and in particular one key enzyme, protoporphyrinogen IX oxidase (PPO). When plants are treated with DPE or pyrimidinedione, an accumulation of protoporphyrin IX, the first photosensitizer of this pathway, is observed in cytosol where it becomes very deleterious under light. Indeed these herbicides trigger plant death in two distinct ways: (i) inhibition of chlorophylls and heme syntheses and (ii) a huge accumulation of protoporphyrin IX in cytosol. Recently, a strategy based on plant transgenesis that induces deregulation of the tetrapyrrole pathway by up- or down-regulation of genes encoding enzymes, such as glutamyl-[Formula: see text]RNA reductase, porphobilinogen deaminase and PPO, has been developed. Against all expectations, only transgenic crops overexpressing PPO showed resistance to DPE and pyrimidinedione. This herbicide resistance of transgenic crops leads to the hypothesis that the overall consumption of herbicides will be reduced as previously reported for glyphosate-resistant transgenic crops. In this review, after a rapid presentation of plant tetrapyrrole biosynthesis, we show how only PPO enzyme can be the target of DPE and how transgenic crops can be further resistant not only to herbicide but also to abiotic stress such as drought or chilling. Keeping in mind that this approach is mostly prohibited in Europe, we attempt to discuss it to interest the scientific community, from plant physiologists to chemists, who work on the interface of photosensitizer optimization and agriculture.

2021 ◽  
Author(s):  
Csanad Gurdon ◽  
Alexander Kozik ◽  
Rong Tao ◽  
Alexander Poulev ◽  
Isabel Armas ◽  
...  

Abstract Dietary flavonoids play an important role in human nutrition and health. Flavonoid biosynthesis genes have recently been identified in lettuce (Lactuca sativa); however, few mutants have been characterized. We now report the causative mutations in Green Super Lettuce (GSL), a natural light green mutant derived from red cultivar NAR; and GSL-Dark Green (GSL-DG), an olive-green natural derivative of GSL. GSL harbors CACTA 1 (LsC1), a 3.9-kb active nonautonomous CACTA superfamily transposon inserted in the 5′ untranslated region of anthocyanidin synthase (ANS), a gene coding for a key enzyme in anthocyanin biosynthesis. Both terminal inverted repeats (TIRs) of this transposon were intact, enabling somatic excision of the mobile element, which led to the restoration of ANS expression and the accumulation of red anthocyanins in sectors on otherwise green leaves. GSL-DG harbors CACTA 2 (LsC2), a 1.1-kb truncated copy of LsC1 that lacks one of the TIRs, rendering the transposon inactive. RNA-sequencing and reverse transcription quantitative PCR of NAR, GSL, and GSL-DG indicated the relative expression level of ANS was strongly influenced by the transposon insertions. Analysis of flavonoid content indicated leaf cyanidin levels correlated positively with ANS expression. Bioinformatic analysis of the cv Salinas lettuce reference genome led to the discovery and characterization of an LsC1 transposon family with a putative transposon copy number greater than 1,700. Homologs of tnpA and tnpD, the genes encoding two proteins necessary for activation of transposition of CACTA elements, were also identified in the lettuce genome.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 782
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Myung Geun Ji ◽  
Gyeong-Im Shin ◽  
Song Yi Jeong ◽  
...  

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


2001 ◽  
Vol 183 (7) ◽  
pp. 2172-2177 ◽  
Author(s):  
Jonathan G. Krum ◽  
Scott A. Ensign

ABSTRACT The bacterial metabolism of propylene proceeds by epoxidation to epoxypropane followed by a sequence of three reactions resulting in epoxide ring opening and carboxylation to form acetoacetate. Coenzyme M (2-mercaptoethanesulfonic acid) (CoM) plays a central role in epoxide carboxylation by serving as the nucleophile for epoxide ring opening and the carrier of the C3 unit that is ultimately carboxylated to acetoacetate, releasing CoM. In the present work, a 320-kb linear megaplasmid has been identified in the gram-negative bacterium Xanthobacter strain Py2, which contains the genes encoding the key enzymes of propylene oxidation and epoxide carboxylation. Repeated subculturing of Xanthobacter strain Py2 under nonselective conditions, i.e., with glucose or acetate as the carbon source in the absence of propylene, resulted in the loss of the propylene-positive phenotype. The propylene-negative phenotype correlated with the loss of the 320-kb linear megaplasmid, loss of induction and expression of alkene monooxgenase and epoxide carboxylation enzyme activities, and the loss of CoM biosynthetic capability. Sequence analysis of a hypothetical protein (XecG), encoded by a gene located downstream of the genes for the four enzymes of epoxide carboxylation, revealed a high degree of sequence identity with proteins of as-yet unassigned functions in the methanogenic archaeaMethanobacterium thermoautotrophicum andMethanococcus jannaschii and in Bacillus subtilis. The M. jannaschii homolog of XecG, MJ0255, is located next to a gene, MJ0256, that has been shown to encode a key enzyme of CoM biosynthesis (M. Graupner, H. Xu, and R. H. White, J. Bacteriol. 182: 4862–4867, 2000). We propose that the propylene-positive phenotype of Xanthobacter strain Py2 is dependent on the selective maintenance of a linear megaplasmid containing the genes for the key enzymes of alkene oxidation, epoxide carboxylation, and CoM biosynthesis.


Author(s):  
Yuki Sasaki ◽  
Ayako Horigome ◽  
Toshitaka Odamaki ◽  
Jin-Zhong Xiao ◽  
Akihiro Ishiwata ◽  
...  

Gum arabic arabinogalactan (AG) protein (AGP) is a unique dietary fiber that is degraded and assimilated by only specific strains of Bifidobacterium longum subsp. longum. Here, we identified a novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052, and classified it into the glycoside hydrolase family 39 (GH39). GAfase released α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP and β-l-Arap-(1→3)-l-Ara from larch AGP, and the α-d-Galp-(1→3)-l-Ara release activity was found to be 594-fold higher than that of β-l-Arap-(1→3)-l-Ara. The GAfase gene was part of a gene cluster that included genes encoding a GH36 α-galactosidase candidate and ABC transporters for the assimilation of the released α-d-Galp-(1→3)-l-Ara in B. longum. Notably, when α-d-Galp-(1→3)-l-Ara was removed from gum arabic AGP, it was assimilated by both B. longum JCM7052 and the non-assimilative B. longum JCM1217, suggesting that the removal of α-d-Galp-(1→3)-l-Ara from gum arabic AGP by GAfase permitted the cooperative action with type-II AG degradative enzymes in B. longum. The present study provides new insight into the mechanism of gum arabic AGP degradation in B. longum. IMPORTANCE Bifidobacteria harbor numerous carbohydrate-active enzymes that degrade several dietary fibers in the gastrointestinal tract. B. longum JCM7052 is known to exhibit the ability to assimilate gum arabic AGP, but the key enzyme involved in the degradation of gum arabic AGP remains unidentified. Here, we cloned and characterized a GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052. The enzyme was responsible for the release of α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP. The presence of a gene cluster including the GAfase gene is specifically observed in gum arabic AGP assimilative strains. However, GAfase-carrier strains may affect GAfase-noncarrier strains that express other type-II AG degradative enzymes. These findings provide insights into the bifidogenic effect of gum arabic AGP.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 155 ◽  
Author(s):  
A. S. M. Kamruzzaman ◽  
Azam Mikani ◽  
Amr A. Mohamed ◽  
Azza M. Elgendy ◽  
Makio Takeda

Although the regulation of vitellogenesis in insects has been mainly discussed in terms of ‘classical’ lipid hormones, juvenile hormone (JH), and 20-hydroxyecdysone (20E), recent data support the notion that this process must be adjusted in harmony with a nutritional input/reservoir and involvement of certain indoleamines and neuropeptides in regulation of such process. This study focuses on crosstalks among these axes, lipid hormones, monoamines, and neuropeptides in regulation of vitellogenesis in the American cockroach Periplaneta americana with novel aspects in the roles of arylalkylamine N-acetyltransferase (aaNAT), a key enzyme in indoleamine metabolism, and the enteroendocrine peptides; crustacean cardioactive peptide (CCAP) and short neuropeptide F (sNPF). Double-stranded RNA against aaNAT (dsRNAaaNAT) was injected into designated-aged females and the effects were monitored including the expressions of aaNAT itself, vitellogenin 1 and 2 (Vg1 and Vg2) and the vitellogenin receptor (VgR) mRNAs, oocyte maturation and changes in the hemolymph peptide concentrations. Effects of peptides application and 20E were also investigated. Injection of dsRNAaaNAT strongly suppressed oocyte maturation, transcription of Vg1, Vg2, VgR, and genes encoding JH acid- and farnesoate O-methyltransferases (JHAMT and FAMeT, respectively) acting in the JH biosynthetic pathway. However, it did not affect hemolymph concentrations of CCAP and sNPF. Injection of CCAP stimulated, while sNPF suppressed oocyte maturation and Vgs/VgR transcription, i.e., acting as allatomedins. Injection of CCAP promoted, while sNPF repressed ecdysteroid (20E) synthesis, particularly at the second step of Vg uptake. 20E also affected the JH biosynthetic pathway and Vg/VgR synthesis. The results revealed that on the course of vitellogenesis, JH- and 20E-mediated regulation occurs downstream to indoleamines- and peptides-mediated regulations. Intricate mutual interactions of these regulatory routes must orchestrate reproduction in this species at the highest potency.


2020 ◽  
Vol 17 (5) ◽  
pp. 1231-1245 ◽  
Author(s):  
Christine Rooks ◽  
James Kar-Hei Fang ◽  
Pål Tore Mørkved ◽  
Rui Zhao ◽  
Hans Tore Rapp ◽  
...  

Abstract. Sponges are commonly known as general nutrient providers for the marine ecosystem, recycling organic matter into various forms of bioavailable nutrients such as ammonium and nitrate. In this study we challenge this view. We show that nutrient removal through microbial denitrification is a common feature in six cold-water sponge species from boreal and Arctic sponge grounds. Denitrification rates were quantified by incubating sponge tissue sections with 15NO3--amended oxygen-saturated seawater, mimicking conditions in pumping sponges, and de-oxygenated seawater, mimicking non-pumping sponges. It was not possible to detect any rates of anaerobic ammonium oxidation (anammox) using incubations with 15NH4+. Denitrification rates of the different sponge species ranged from below detection to 97 nmol N cm−3 sponge d−1 under oxic conditions, and from 24 to 279 nmol N cm−3 sponge d−1 under anoxic conditions. A positive relationship between the highest potential rates of denitrification (in the absence of oxygen) and the species-specific abundances of nirS and nirK genes encoding nitrite reductase, a key enzyme for denitrification, suggests that the denitrifying community in these sponge species is active and prepared for denitrification. The lack of a lag phase in the linear accumulation of the 15N-labelled N2 gas in any of our tissue incubations is another indicator for an active community of denitrifiers in the investigated sponge species. Low rates for coupled nitrification–denitrification indicate that also under oxic conditions, the nitrate used to fuel denitrification rates was derived rather from the ambient seawater than from sponge nitrification. The lack of nifH genes encoding nitrogenase, the key enzyme for nitrogen fixation, shows that the nitrogen cycle is not closed in the sponge grounds. The denitrified nitrogen, no matter its origin, is then no longer available as a nutrient for the marine ecosystem. These results suggest a high potential denitrification capacity of deep-sea sponge grounds based on typical sponge biomass on boreal and Arctic sponge grounds, with areal denitrification rates of 0.6 mmol N m−2 d−1 assuming non-pumping sponges and still 0.3 mmol N m−2 d−1 assuming pumping sponges. This is well within the range of denitrification rates of continental shelf sediments. Anthropogenic impact and global change processes affecting the sponge redox state may thus lead to deep-sea sponge grounds changing their role in marine ecosystem from being mainly nutrient sources to becoming mainly nutrient sinks.


1999 ◽  
Vol 65 (4) ◽  
pp. 1652-1657 ◽  
Author(s):  
Sara Hallin ◽  
Per-Eric Lindgren

ABSTRACT Using consensus regions in gene sequences encoding the two forms of nitrite reductase (Nir), a key enzyme in the denitrification pathway, we designed two sets of PCR primers to amplifycd 1- and Cu-nir. The primers were evaluated by screening defined denitrifying strains, denitrifying isolates from wastewater treatment plants, and extracts from activated sludge. Sequence relationships ofnir genes were also established. Thecd 1 primers were designed to amplify a 778 to 799-bp region of cd1-nir in the six published sequences. Likewise, the Cu primers amplified a 473-bp region in seven of the eight published Cu-nir sequences. Together, the two sets of PCR primers amplified nir genes in nine species within four genera, as well as in four of the seven sludge isolates. The primers did not amplify genes of nondenitrifying strains. The Cu primers amplified the expected fragment in all 13 sludge samples, but cd1-nir fragments were only obtained in five samples. PCR products of the expected sizes were verified as nir genes after hybridization to DNA probes, except in one case. The sequenced nir fragments were related to other nir sequences, demonstrating that the primers amplified the correct gene. The selected primer sites for Cu-nir were conserved, while broad-range primers targeting conserved regions of cd1-nir seem to be difficult to find. We also report on the existence of Cu-nir in Paracoccus denitrificans Pd1222.


2020 ◽  
Vol 8 (4) ◽  
pp. 546 ◽  
Author(s):  
Jürgen J. Heinisch ◽  
Johannes Knuesting ◽  
Renate Scheibe

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme of the oxidative part of the pentose phosphate pathway and serves as the major source of NADPH for metabolic reactions and oxidative stress response in pro- and eukaryotic cells. We here report on a strain of the model yeast Saccharomyces cerevisiae which lacks the G6PD-encoding ZWF1 gene and displays distinct growth retardation on rich and synthetic media, as well as a strongly reduced chronological lifespan. This strain was used as a recipient to introduce plasmid-encoded heterologous G6PD genes, synthesized in the yeast codon usage and expressed under the control of the native PFK2 promotor. Complementation of the hypersensitivity of the zwf1 mutant towards hydrogen peroxide to different degrees was observed for the genes from humans (HsG6PD1), the milk yeast Kluyveromyces lactis (KlZWF1), the bacteria Escherichia coli (EcZWF1) and Leuconostoc mesenteroides (LmZWF1), as well as the genes encoding three different plant G6PD isoforms from Arabidopsis thaliana (AtG6PD1, AtG6PD5, AtG6PD6). The plastidic AtG6PD1 isoform retained its redox-sensitive activity when produced in the yeast as a cytosolic enzyme, demonstrating the suitability of this host for determination of its physiological properties. Mutations precluding the formation of a disulfide bridge in AtG6PD1 abolished its redox-sensitivity but improved its capacity to complement the yeast zwf1 deletion. Given the importance of G6PD in human diseases and plant growth, this heterologous expression system offers a broad range of applications.


Sign in / Sign up

Export Citation Format

Share Document