SYNTHESIS OF STABLE DISPERSIONS OF WATER-SOLUBLE AND SERS-ACTIVE SILVER NANOPARTICLES USING PAM

NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350046 ◽  
Author(s):  
JING XIONG ◽  
QUNJI XUE ◽  
XUEDONG WU

Water-soluble and stable dispersions of silver nanoparticles (Ag NPs) were obtained using a straightforward one-step synthesis method. Polyacrylamide (PAM), a kind of water-soluble polymer with polar amide group, is used as stabilizing agent to prevent the aggregation of Ag NPs in aqueous medium. The successful formation of PAM-stabilized Ag NPs was demonstrated by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). In addition, the SERS-active substrate made of Ag NPs was fabricated to enhance the Raman signal of R6G and graphene. The significant SERS effective makes the as-synthesized substrate to be widely used in practical applications for routine SERS analysis and water environment biological monitoring.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1525
Author(s):  
Sergey Vorobyev ◽  
Elena Vishnyakova ◽  
Maxim Likhatski ◽  
Alexander Romanchenko ◽  
Ivan Nemtsev ◽  
...  

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2014 ◽  
Vol 628 ◽  
pp. 120-124
Author(s):  
Fa Yong Feng ◽  
Pei Zhi Yu

Brief introduction of research progresses of hydrophobically associating water soluble polymer, as well as a synthesis method of a hydrophobically associating water-soluble polymer P (AM/KAA/MAHB). Meanwhile the molecular structure is characterized, and the viscosity behavior of the ionic hydrophobic-associating polymer solution is analyzed. The influences of polymer concentration, temperature, shear rate and water salinity of the saline solution on apparent viscosity are discussed. The critical associating concentration of polymer in salt solutions and salt thickening effect are also studied. The results show that the polymer possesses obvious temperature resistance and salt tolerance compared with partially hydrolyzed polyacrylamide polymer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liling Jing ◽  
Mark G. Moloney ◽  
Hao Xu ◽  
Lian Liu ◽  
Wenqiang Sun ◽  
...  

Abstract Silver nanoparticles (Ag NPs) system capable of exhibiting different particle size at different temperature was developed, which depended on the extent of Diels–Alder (DA) reaction of bismaleimide with furan. Thus, Ag NPs were functionalized on the surface by a furyl-substituted carbene through an insertion reaction. Subsequent reversible DA crosslinking achieved a controlled aggregation with different particle size, which gives a series of different antibacterial activity. These Ag NPs were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Nanoparticle Size Analyzer. The aggregation of the Ag NPs could be reliably adjusted by varying the temperature of DA/reverse-DA reaction. The antibacterial activity was assessed using the inhibition zone method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which decreased first and then increased in agreement with the size evolution of Ag NPs. This approach opens a new horizon for the carbene chemistry to modify silver nanoparticles with variable size and give controlled antibacterial activity.


2011 ◽  
Vol 337 ◽  
pp. 116-119 ◽  
Author(s):  
Dong Mei Zhao ◽  
Qing Mao Feng ◽  
Li Li Lv ◽  
Jian Li

Silver nanoparticles (Ag NPs)/cellulose acetate (CA) composite ultrafine fibers were successfully prepared by the electrospinning method. Water-soluble Ag NPs were directly mixed into CA polymer fibers to form organic–inorganic composite ultrafine fibers. The optical property of Ag NPs was measured by ultraviolet-visble spectrometer (UV-vis). The presence and identification of crystalline of Ag NPs were confirmed by XRD analysis. Transmission electron microscopy (TEM) images showed that silver nanoparticles (Ag NPs) with an average diameter of 5–15 nm were obtained and were well distributed in the CA ultrafine fibers. The morphologies of the as-prepared electrospun Ag NPs/CA composite ultrafine fibers were characterized by scanning electron microscopy (SEM) and TEM. The composition of fibers was characterized by FTIR spectrometer.


2011 ◽  
Vol 122 (4) ◽  
pp. 2189-2196 ◽  
Author(s):  
Dipanwita Maity ◽  
Mrinal Kanti Bain ◽  
Biplab Bhowmick ◽  
Joy Sarkar ◽  
Saswati Saha ◽  
...  

2011 ◽  
Vol 10 (04n05) ◽  
pp. 1179-1183
Author(s):  
R. ANITHA ◽  
B. KARTHIKEYAN ◽  
T. PANDIYARAJAN ◽  
S. VIGNESH ◽  
R. ARTHUR JAMES ◽  
...  

Silver nanoparticles are known to have inhibitory antimicrobial properties. In this letter, we report the synthesis of silver nanoparticles by using biocompatible, water soluble polymer through polyol method. Optical absorption spectrum of the prepared particles shows an absorption peak around 433 nm which is because of Surface Plasmon Resonance (SPR) of silver nanoparticles. Fourier transform infrared (FTIR) studies were done to identify the interaction of the nanoparticle and polymer. Transmission Electron Microscopic (TEM) studies confirm that the prepared particles are ~ 100 nm in size. Antifungal activity was studied through standard disk diffusion method. Studies show the prepared particles are potential candidates for the antifungal activity.


2006 ◽  
Vol 6 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Md. Habib Ullah ◽  
Il Kim ◽  
Chang-Sik Ha

Stable and monodisperse silver nanoparticles (NPs) have been synthesized using high metal salt concentration (up to 0.735 M) through a simple but novel technique. It is based on one-step procedure that uses glycerol for reducing Ag+ in the presence of o-phenylenediamine (o-PDA) resulting the nanoparticles are in two forms (one water-soluble, the other a precipitated). The water-soluble phase contains NPs that have a bimodal size distribution (2–3 and 5–6 nm); the other comprises precipitated NPs, having a unimodal size distribution (2–3 nm). The water-soluble NPs are covalently bonded to the aromatic amine molecules to form isolated units, while the precipitated nanoparticles are embedded in the networks formed by cross-linking between COOH groups of hydroxypyruvic acid (oxidized form of glycerol) and NH2 groups of o-PDA molecules. We used transmission electron microscopy (TEM), UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) to characterize the silver products obtained.


Sign in / Sign up

Export Citation Format

Share Document