ANTIFUNGAL STUDIES ON BIOCOMPATIBLE POLYMER ENCAPSULATED SILVER NANOPARTICLES

2011 ◽  
Vol 10 (04n05) ◽  
pp. 1179-1183
Author(s):  
R. ANITHA ◽  
B. KARTHIKEYAN ◽  
T. PANDIYARAJAN ◽  
S. VIGNESH ◽  
R. ARTHUR JAMES ◽  
...  

Silver nanoparticles are known to have inhibitory antimicrobial properties. In this letter, we report the synthesis of silver nanoparticles by using biocompatible, water soluble polymer through polyol method. Optical absorption spectrum of the prepared particles shows an absorption peak around 433 nm which is because of Surface Plasmon Resonance (SPR) of silver nanoparticles. Fourier transform infrared (FTIR) studies were done to identify the interaction of the nanoparticle and polymer. Transmission Electron Microscopic (TEM) studies confirm that the prepared particles are ~ 100 nm in size. Antifungal activity was studied through standard disk diffusion method. Studies show the prepared particles are potential candidates for the antifungal activity.

2020 ◽  
Vol 50 (2) ◽  
pp. 84-91
Author(s):  
N. N. Shkil ◽  
E. V. Nefedova

Research has been conducted to evaluate the effect of antibiotics and silver nanoparticles in combination with antibiotics on the change in antibiotic sensitivity to antibacterial drugs of E. coli ATCC 25922 reference strain and its isolate. Nanoparticles obtained by electron beam treatment of aqueous solution containing water-soluble stabilizing polymer and water-soluble silver salt were used in the experiment. During the treatment a beam of accelerated electrons obtained on the installation of a linear accelerator of the ILU-10 type passed through a solution with a working dose of 5–30 kGy ranging in size from 20 to 60 nm. Sensitivity of microorganisms of E. coli ATCC 25922 reference strain and its isolate obtained from cow endometritis to antibacterial substances and their combinations was determined from dilution with a minimum bacteriostatic concentration. The dilution in the amount of 0.2 ml was added to meat-and-peptone agar and the antibiotic sensitivity of microorganisms was determined by the disk diffusion method. Sensitivity to 24 types of antibacterial drugs was tested. Cultivation of E. coli ATCC 25922 with AgNPs in combination with one of the antibiotics (azitronite, amoxicillin, enroflox, ceftiofur, tylosin, cobactan, oxytetracycline) contributed to an increase in the number of drugs (from 14.3 to 57.1%), to which the microorganism was sensitive. Cultivation of the E. coli isolate with 5 (62.5%) of the studied antibiotics led to an increase in resistance from 1 (5.5%) to 3 (16.7%) antibacterial agents. AgNPs in combination with antibiotics azitronite, amoxicillin, enroflox, ceftiofur, tylosin, cobactan, gentamicin, oxytetracycline contributed to a decrease in the resistance of E. coli ATCC 25922 (from 15.4 to 46.1%) and E. coli field isolate (from 16.7 to 37.7%) to antibacterial drugs. The pronounced ability of AgNPs to increase antibiotic sensitivity was established. This was confirmed by the joint cultivation of antibiotics and AgNPs with E. coli ATCC 25922 and field isolate of E. coli, causing an increase in sensitivity and high sensitivity to antibacterial drugs, which was previously absent. The study confirmed the results of research on the ability of nanoparticles of metals of the transition group to affect the sensitivity of microorganisms to antibacterial agents and to restore it.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aruna Jyothi Kora ◽  
Jayaraman Arunachalam

A simple and ecofriendly procedure have been devised for the green synthesis of silver nanoparticles using the aqueous extract of gum tragacanth (Astragalus gummifer), a renewable, nontoxic natural phyto-exudate. The water soluble components in the gum act as reductants and stabilizers. The generated nanoparticles were analyzed using UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, and Raman spectroscopy. The role of gum concentration and reaction time on the synthesis of nanoparticles was studied. By regulating the reaction conditions, spherical nanoparticles of13.1±1.0 nm size were produced. Also, the possible functional groups involved in reduction and capping of nanoparticles has been elucidated. The antibacterial activity of the fabricated nanoparticles was tested on model Gram-negative and Gram-positive bacterial strains with well-diffusion method. These nanoparticles exhibited considerable antibacterial activity on both the Gram classes of bacteria, implying their potential biomedical applications.


Author(s):  
Rajeshkumar S ◽  
Malarkodi C ◽  
Venkat S Kumar S

Objectives: The aim of this study is to synthesize silver nanoparticles using the algal extract of Padina tetrastromatica and evaluate its antifungal activity against pathogenic fungus isolated from clinical samples.Results: Formation of brown color at 15 minutes indicates the production of silver nanoparticles by the extract of brown algae P. tetrastromatica. Surface plasmon resonance band was centered at 440 nm which was observed by UV-vis spectrophotometer. SEM image revealed spherical and cubical nanoparticles with high agglomeration, and energy-dispersive X-ray illustrates elemental components of silver formed at 3 keV. TEM shows spherical, truncated, and ellipsoidal nanoparticles and also it evidences the algae compounds that are capped with nanoparticles. SAED pattern proved four diffraction face-centered cubic rings at (111), (200), (220), and (311) which indicates the crystalline nature of nanoparticles. Silver nanoparticles show high inhibition activity against Fusarium sp, Aspergillus niger, Candida albicans, Aspergillus fumigatus, and Aspergillus flavus at different concentrations. P. tetrastromatica-mediated synthesis of silver nanoparticles shows rapid and eco-friendly silver ion reduction process.Methods: Dried algal biomass was used to prepare the pure algal extract and added with 1 mM AgNO , and the color change was noted and recorded by ultraviolet (UV)-vis spectrophotometer. The morphological characteristics were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Crystalline structure was analyzed by SAED pattern. Antifungal activity was performed by agar well diffusion method against various pathogenic fungi.Conclusion: Therefore, this present study elucidates that algae-mediated synthesized silver nanoparticles have antifungal activity against pathogenic fungi, so it can be developed as a novel medicine for human welfare in biomedical applications in the near future.Keywords: Padina tetrastromatica, Silver nanoparticles, Transmission electron microscopy, Antifungal activity, Green synthesis. 


2020 ◽  
Vol 12 (4) ◽  
pp. 530-534
Author(s):  
Mala Mathiyazhagan ◽  
Jeevarani John Raj ◽  
Jeya Jothi Gabriel

The benefit of utilizing plants for the synthesis of nanoparticles include a broad variability of metabolites that may aid in reduction, easily available as well as safe to handle. Boerhavia diffusa L. is known as punarnava, possessing anti-inflammatory, diuretic activities and is being used for the common clinical problems such as nephrotic edema, syndrome and ascites resulting from early cirrhosis of the liver and chronic peritonitis. The present study aims at biosynthesis of silver fabricated nanoparticles with the aqueous extracts of B. diffusa leaves and roots by using 1 mM AgNO3 . Preliminary confirmation of silver nanoparticles was done by using Ultra Violet Visual (UV-VIS) Spectrophotometer. The biomolecules were responsible for reducing the Ag+ to Ag0 which was identified by Fourier Transform Infra-Red (FTIR). The nanoparticles were subjected to Scanning Electron Microscopic (SEM) analysis to detect the Size and morphology of the particles. The nanoscale level (< 100 nm) of spherical shaped aggregates was identified. Antimicrobial assays were carried out with the selected clinical isolates using disc diffusion method and the notable inhibitory zones were observed against all the isolates at very low concentration.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Author(s):  
Shyla Marjorie Haqq ◽  
Amit Chattree

  This review is based on the synthesis of silver nanoparticles (AgNPs) using a green approach which is biofabricated from various medicinal plants. AgNPs were prepared from the various parts of the plants such as the flowers, stems, leaves, and fruits. Various physiochemical characterizations were performed using the ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. AgNPs were also used to inhibit the growth of bacterial pathogens and were found to be effective against both the Gram-positive and Gram-negative bacteria. For the silver to have antimicrobial properties, it must be present in the ionized form. All the forms of silver-containing compounds with the observed antimicrobial properties are in one way or another source of silver ions. Although the antimicrobial properties of silver have been known, it is thought that the silver atoms bind to the thiol groups in enzymes and subsequently leads to the deactivation of enzymes. For the silver to have antimicrobial properties, it must be present in the ionized form. The study suggested that the action of the AgNPs on the microbial cells resulted into cell lysis and DNA damage. AgNPs have proved their candidature as a potential antibacterial against the multidrug-resistant microbes. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape, and application. Silver nanoparticle synthesis and their application are summarized and critically discussed in this review.


2021 ◽  
Vol 5 (3) ◽  
pp. 109-122
Author(s):  
Tuğba Kahraman ◽  
Safiye Elif Korcan ◽  
Recep Liman ◽  
İbrahim Hakkı Ciğerci ◽  
Yaser Acikbas ◽  
...  

Abstract Silver nanoparticles (AgNPs) have been used in a variety of biomedical applications in the last two decades, including antimicrobial, anti-inflammatory, and anticancer treatments. The present study highlights the extracellular synthesis of silver nanoparticles AgNPs using Neopestalotiopsis clavispora MH244410.1 and its antibacterial, antibiofilm, and genotoxic properties. Locally isolated N. clavispora MH244410.1 was identified by Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Optimization of synthesized AgNPs was performed by using various parameters (pH (2, 4, 7, 9 and 12), temperature (25, 35 and 45 °C), and substrate concentration (0.05, 0.1, 0.15, 0.2 and 0.25 mM)). After 72 hours of incubation in dark conditions, the best condition for the biosynthesis of AgNPs was determined as 0.25 mM metal concentration at pH 12 and 35 °C. Fungal synthesized AgNPs were characterized via spectroscopic and microscopic techniques such as Fouirer Transform Infrared Spectrophotometer (FTIR), UV-Visible Spectroscopy, and Transmission Electron Microscopy (TEM). The average size of the AgNPs was determined less than 60 nm using the TEM and Zetasizer measurement system (measured in purity water suspension). The characteristic peak of AgNPs was observed at ~414 nm from UV-Vis results. Antibacterial and genotoxic activity of synthesized AgNPs (0.1, 1, and 10 ppm) were also determined by using the agar well diffusion method and in vivo Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. AgNPs exhibited potential antimicrobial activity against all the tested bacteria (Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa) except Escherichia coli in a dose-dependent manner. AgNPs did not induce genotoxicity in the Drosophila SMART assay. 79.33, 65.47, and 41.95% inhibition of biofilms formed by P. aeruginosa were observed at 10, 1, and 0.1 ppm of AgNPs, respectively. The overall results indicate that N. clavispora MH244410.1 is a good candidate for novel applications in biomedical research.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


2020 ◽  
Vol 8 (6) ◽  
pp. 179-187
Author(s):  
Titik Taufikurohmah ◽  
Tasha Anandya Tantyani

This Research on the antibacterial and antifungal activity of nanosilver against Neisseria gonorrhoeae and Candida albincas fungi has been carried out. The purpose of this study was to determine antibacterial activity of nanosilver against Neisseria gonorrhoeae and antifungal activity against Candida albincas. Synthesis Nanosilver uses bottom up method and characterized using UV-Vis Spectrophotometer. Nanosliver concentrations used were 30, 40, 50, and 60 ppm. Antibacterial and antifungal activity tests using disk diffusion method. Observations obtained in form of the presence or absence of clear zones formed around paper discs indicate the inhibition of nanosilver on microbial growth. The results of testing the antifungal activity of Candida albicans on nanosilver with concentrations of 30, 40, 50 and 60 ppm resulted in clear zones of 9.73 nm, 11.46 nm, 11.93 nm, and 13 nm with fungal inhibition response categories is medium and strong. The results antibacterial activity test of Neisseria gonorrhoeae on nanosilver with concentrations of 30, 40, 50 and 60 ppm did not show any clear zone around the disc, it showed that nanosilver in this study did not have antibacterial activity against Neisseria gonorrhoeae.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Pavithra L. Jayatilake ◽  
Helani Munasinghe

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p≤0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


Sign in / Sign up

Export Citation Format

Share Document