MORPHOLOGY EVOLUTION AT NANO- TO MICRO-SCALE

2008 ◽  
Vol 01 (03) ◽  
pp. 167-172 ◽  
Author(s):  
XU ZHAO ◽  
XIUE REN ◽  
CONGTING SUN ◽  
XU ZHANG ◽  
YUNFEI SI ◽  
...  

Morphology evolution of inorganic/organic crystals during crystallization is a universal growth phenomenon. In this work, we have developed a capping agent-assisted strategy to clearly identify the whole process of morphology evolution in solution growth system. One kind of morphology evolution trend with three types of morphologies of cuprous oxide ( Cu 2 O ) was kinetically observed at varying the molar ratio of EDTA/ Cu (II) under three different pH values. Two kinds of morphology evolution trends of zinc oxide ( ZnO ) were also kinetically observed in the presence of H 2 O 2 and CH 3 COOH (HAc), respectively. Simulation results show that the morphology evolution of nano- to micro-scale crystals is strongly dependent on the bonding characteristics of a growth system. The present strategy positively explores the interesting principles of morphology evolution of functional materials, and can be widely extended to nano- to micro-scale devices research.

2020 ◽  
pp. 42-48
Author(s):  
Tatiana Safronova ◽  
◽  
Tatiana Shatalova ◽  
Snezhana Tikhonova ◽  
Yaroslav Filippov ◽  
...  

Powders of calcium pyrophosphate Ca2P2O7 in the form of γ- и β-modifications have been produced as a result of thermal conversion of brushite CaHPO4∙2H2O synthesized from phosphoric acid H3PO4 and calcium carbonate CaCO3 at the molar ratio P / Ca = 1.1. The resulting powders can be used for production of various functional materials including biocompatible and bioresorbable ones for the treatment of bone defects.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 855
Author(s):  
Ahmed Amine Azzaz ◽  
Salah Jellali ◽  
Nasser Ben Harharah Hamed ◽  
Atef El Jery ◽  
Lotfi Khezami ◽  
...  

In the present study, methylene blue (MB) removal from aqueous solutions via the photocatalytic process using TiO2 as a catalyst in the presence of external ultra-violet light (UV) was investigated. The results of adsorption in the absence of UV radiation showed that adsorption reached an equilibrium state at 60 min. The experimental kinetic data were found to be well fitted by the pseudo-second-order model. Furthermore, the isotherm study suggested that dye uptake by TiO2 is a chemisorption process with a maximum retention capacity of 34.0 mg/g. The photodegradation of MB was then assessed under various experimental conditions. The related data showed that dye mineralization decreased when dye concentrations were increased and was favored at high pH values and low salt concentrations. The simultaneous presence of organic and inorganic pollution (Zinc) was also evaluated. The effect of the molar ratio Zn2+/MB+ in the solution at different pH values and NaCl concentrations was also monitored. The corresponding experimental results showed that at low values of Zn2+ in the solution (30 mg/L), the kinetic of the MB removal became faster until reaching an optimum at Zn2+/MB+ concentrations of 60/60 mg/L; it then slowed down for higher concentrations. The solutions’ carbon contents were measured during the degradation process and showed total mineralization after about 5 h for the optimal Zn2+/MB+ condition.


Author(s):  
R. F. Sabirov ◽  
A. F. Makhotkin ◽  
Yu. N. Sakharov ◽  
I. A. Makhotkin ◽  
I. Yu. Sakharov

Experimental studies of the kinetics and mechanism of the process, decomposition of apatite by phosphoric acid, in the Apatite-H3PO4-H2O system without the addition of sulfuric acid have been performed. The study of the decomposition process of Kovdorsky apatite with certain particle sizes was carried out in a batch reactor with a volume of 1 dm3 with stirring of the reaction mixture, and an initial concentration of phosphoric acid of 17% by weight, at a temperature of 78–82 °C. Observation of the process was carried out by determining the concentration of phosphoric acid and the concentration of monocalcium phosphate. The acidity of the reaction mixture was determined by the pH meter readings (pH-105 MA with a glass combined-ESC-10603 electrode). It was shown that during the whole process a constant smooth increase in the pH value of the reaction mixture to pH 6 occurs. Comparison of the pH values of the reaction mixture during the actual at the time of determining the concentration of phosphoric acid and pH of phosphoric acid of the corresponding concentration in the aqueous solution shows that the pH value of the reaction mixture is significantly affected by the presence of monocalcium phosphate gel. During the process, during the first thirty minutes, the concentration of phosphoric acid decreases from 17 to 10% by weight, the corresponding quantitative formation of monocalcium phosphate gel and a proportional increase in the pH of the reaction mixture. Then, as the concentration of phosphoric acid decreases, the process slows down and does not proceed to the end under the experimental conditions. The dependence of the concentration of hydrogen ions in the reaction mixture on the time of the process of decomposition of apatite in phosphoric acid, which is presented in logarithmic coordinates, shows that the mechanism of formation of hydrogen ions during the whole process does not change. Thus, it is shown that the process of decomposition of apatite by phosphoric acid in the Apatite-H3PO4-H2O system proceeds with the formation of an intermediate product - monocalcium phosphate gel. When this occurs, a corresponding significant change in the pH values of the reaction mixture occurs. During the whole process there is a constant decrease in the concentration of phosphoric acid.


1992 ◽  
Vol 55 (11) ◽  
pp. 893-898 ◽  
Author(s):  
TAKESHI SUZUKI ◽  
FERGUS M. CLYDESDALE ◽  
TIRA PANDOLF

The effect of six organic acids, ascorbic, citric, fumaric, lactic, malic, and succinic, alone and in combination, at a 1:1.9 molar ratio (Fe+2:ligand) on the solubility of iron was evaluated in the presence of lignin under simulated gastrointestinal pH conditions. The enhancing effect, evaluated under two systems of preparation at two pH values, was in the following order: citric>malic>ascorbic>lactic,fumaric>succinic. Citric acid solubilized 80 and 81% of iron under both pH conditions. When ascorbic acid was mixed with fumaric, lactic, and succinic acids, a higher percentage of soluble iron was retained than with these three acids alone. In the case of citric and malic acids, the addition of ascorbic acid reduced the soluble iron. The percentage of soluble iron obtained when prepared at the endogenous pH (2.5–3.1) was higher than that at pH 5.5. These results indicated that ascorbate bound less iron in a soluble form than citrate or malate but more than fumarate, lactate, or succinate. Also, combinations of citric with malic acid did not demonstrate a synergistic effect.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1094
Author(s):  
Erwan Paineau ◽  
Pascale Launois

Synthetic imogolite-like nanotubes (INT) with well-defined diameters represent a considerable opportunity for the development of advanced functional materials. Recent progress has made it possible to increase their aspect ratio and unique self-organization properties were evidenced. We suggest that slight modification of the synthesis conditions may drastically affect the resulting liquid-crystalline properties. In this work, we investigate how the precursor’s [Al]/[Ge] molar ratio (R’) impacts the morphology and the colloidal properties of aluminogermanate INTs by combining a multi-scale characterization. While only double-walled nanotubes are found for R’ ≥ 1.8, the presence of single-walled nanotubes occurs when the ratio is lowered. Except for the lowest R’ ratio investigated (R’ = 0.66), all synthetic products present one-dimensional shapes with a high aspect ratio. Small-angle X-ray scattering experiments allow us to comprehensively investigate the colloidal properties of the final products. Our results reveal that a liquid-crystalline hexagonal columnar phase is detected down to R’ = 1.33 and that it turns into a nematic arrested phase for R’ = 0.90. These results could be useful for the development of novel stimuli-responsive nanocomposites based-on synthetic imogolite nanotubes.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 244 ◽  
Author(s):  
Octavian D. Pavel ◽  
Ariana Şerban ◽  
Rodica Zăvoianu ◽  
Elena Bacalum ◽  
Ruxandra Bîrjega

Curcumin (CR) is a natural antioxidant compound extracted from Curcuma longa (turmeric). Until now, researches related to the incorporation of CR into layered double hydroxides (LDHs) were focused only on hybrid structures based on a MgxAl-LDH matrix. Our studies were extended towards the incorporation of CR in another type of LDH-matrix (Zn3Al-LDH) which could have an even more prolific effect on the antioxidant activity due to the presence of Zn. Four CR-modified Zn3Al-LDH solids were synthesized, e.g., PZn3Al-CR(Aq), PZn3Al-CR(Et), RZn3Al-CR(Aq) and RZn3Al-CR(Et) (molar ratio CR/Al = 1/10, where P and R stand for the preparation method (P = precipitation, R = reconstruction), while (Aq) and (Et) indicate the type of CR solution, aqueous or ethanolic, respectively). The samples were characterized by XRD, Attenuated Total Reflectance Fourier Transformed IR (ATR-FTIR) and diffuse reflectance (DR)-UV–Vis techniques and the CR-release was investigated in buffer solutions at different pH values (1, 2, 5, 7 and 8). XRD results indicated a layered structure for PZn3Al-CR(Aq), PZn3Al-CR(Et), RZn3Al-CR(Aq) impurified with ZnO, while RZn3Al-CR(Et) contained ZnO nano-particles as the main crystalline phase. For all samples, CR-release revealed a decreasing tendency towards the pH increase, and higher values were obtained for RZn3Al-CR(Et) and PZn3Al-CR(Et) (e.g., 45% and 25%, respectively at pH 1).


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2022
Author(s):  
Shotaro Hayashi

It is generally believed that organic single crystals composed of a densely packed arrangement of anisotropic, organic small molecules are less useful as functional materials due to their mechanically inflexible and brittle nature, compared to polymers bearing flexible chains and thereby exhibiting viscoelasticity. Nevertheless, organic crystals have attracted much attention because of their tunable optoelectronic properties and a variety of elegant crystal habits and unique ordered or disordered molecular packings arising from the anisotropic molecular structures. However, the recent emergence of flexible organic crystal materials showing plasticity and elasticity has considerably changed the concept of organic single crystals. In this review, the author summarizes the state-of-the-art development of flexible organic crystal materials, especially functional elastic organic crystals which are expected to provide a foothold for the next generation of organic crystal materials.


2011 ◽  
Vol 183-185 ◽  
pp. 2005-2009
Author(s):  
Lu Wang ◽  
Shu Jun Li ◽  
Pei Pei Liu ◽  
Guang Shou Feng ◽  
Hao Zhong

With the depletion of fossil energy, biology material is getting more and more attention. Bark, as a kind of renewable resource, need to be utilized urgently and reasonably. The larch bark was very extensive in northeast and the use of larch bark is limited to make tannin. However, the whole process produced much bark residue, which could not be utilized effectively. In this paper, based on the content of total phenolic hydroxyl groups, the in-situ synthesis reaction of the larch bark with formaldehyde was performed in different ratios. FTIR analysis was adopted to characterize the synthesized products. After air-drying, the synthesized product was pressed into a bark-based composite under pressure of 10~25 MPa. The effect of pressure and molar ratio of phenols and formaldehyde on the properties of the composite were analyzed. These results indicate that, pressure and molar ratio were both vital factors. The composite with higher molar ratio of phenol and formaldehyde had better abilities of anti-moisture, but the molar ratio of 1:2 made the strongest composite. With the increasing of pressure, the hardness of the composite was greater. For the composite made under 20 MPa and the molar ratio of 1:2, its hardness was 23.41 MPa and its max load was 415.83N. Its thickness and diameter swelling rate of moisture absorption in 12 d was 1.87% and 0.68%.


Sign in / Sign up

Export Citation Format

Share Document