Core-shell Mn3O4/birnessite-MnO2 hierachical structure with enhanced adsorption towards methylene blue

2016 ◽  
Vol 09 (02) ◽  
pp. 1650020 ◽  
Author(s):  
Feifan Huang ◽  
Bowen Zhou ◽  
Han Xiao ◽  
Wei Xiao

The core-shell Mn3O4/birnessite-MnO2 (Mn3O4/MnO2) was successfully established by assembly of birnessite-type MnO2 over Mn3O4 backbones. The product was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), as well as UV–vis absorption spectra (UV–vis) to assess its adsorption of methylene blue (MB) from neutral aqueous solutions. Compared to the individual Mn3O4, the prepared Mn3O4/MnO2 shows enhanced adsorption capability towards MB. Such enhancement is due to the higher surface area and the unique nanosheet shells. The adsorption of MB on the surface of Mn3O4/MnO2 was studied in terms of pseudo-first-order and the pseudo-second-order kinetic models, and the latter was found better. The present study indicates that hierarchically structured core-shell manganese oxides are promising adsorbents for wastewater treatment.

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 891 ◽  
Author(s):  
Li Liu ◽  
Yang Li ◽  
Shisuo Fan

Improperly treated or directly discharged into the environment, wastewater containing dyes can destroy the quality of water bodies and pollute the ecological environment. The removal of dye wastewater is urgent and essential. In this study, corn stalk was pyrolyzed to pristine biochar (CSBC) in a limited oxygen atmosphere and modified using KOH and H3PO4 (KOH-CSBC, H3PO4-CSBC, respectively). The biochars were characterized by surface area and pore size, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), as well as their behavior in adsorbing methylene blue (MB). Results indicated that the pore structure of CSBC became more developed after modification by KOH. Meanwhile, H3PO4-CSBC contained more functional groups after activation treatment. The pseudo-second-order kinetic and the Langmuir adsorption isotherm represented the adsorption process well. The maximum MB adsorption capacity of CSBC, KOH-CSBC, and H3PO4-CSBC was 43.14 mg g−1, 406.43 mg g−1 and 230.39 mg g−1, respectively. Chemical modification significantly enhanced the adsorption of MB onto biochar, especially for KOH-CSBC. The adsorption mechanism between MB and biochar involved physical interaction, electrostatic interaction, hydrogen bonding and π–π interaction. Hence, modified CSBC (especially KOH-CSBC) has the potential for use as an adsorbent to remove dye from textile wastewater.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


Author(s):  
Sridharan Balu ◽  
Kasimayan Uma ◽  
Guan-Ting Pan ◽  
Thomas C.-K. Yang ◽  
Sayee Kannan Ramaraj

Semiconductor materials have been shown to have better photocatalytic behavior and can be utilized for the photodegradation of organic pollutants. In this work, three-dimensional flower-like SnS2 were synthesized by a facile hydrothermal method. Core-shell structured SiO2@α-Fe2O3 nanocomposites were then deposited on the top of the SnS2 flowers. The as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL). The photocatalytic behavior of the SnS2-SiO2@α-Fe2O3 nanocomposites was observed by observing the degradation of methylene blue (MB). The results show an effective enhancement of photocatalytic activity for the degradation of MB especially for the 15 wt. % SiO2@α-Fe2O3 nanocomposites on SnS2 flowers.


2019 ◽  
Vol 4 (4) ◽  
pp. 101
Author(s):  
Neza Rahayu Palapa ◽  
Bakri Rio Rahayu ◽  
Tarmizi Taher ◽  
Aldes Lesbani ◽  
Risfidian Mohadi

Zn/Al and Zn/Fe layered double hydroxides has successfully synthesized by co-precipitation methods with molar ration 3:1. The samples were characterized using X-Ray Diffraction, Fourier Transform Infrared Spectroscopy and Surface Area using BET method. In this study, Zn/Al and Zn/Fe layered double hydroxides were used to remove direct yellow dye in aqueous solution. The experiments were carried out time variations with the aim of observing the kinetic studies. The results showed that the adsorption of direct yellow onto Zn/Al and Zn/Fe layered double hydroxides based on co-efficient correlation kinetic models more fit using pseudo-second-order than pseudo-first-order.


2015 ◽  
Vol 4 (6) ◽  
pp. 289-296 ◽  
Author(s):  
Hind Yaacoubi ◽  
Zuo Songlin ◽  
Mustapha Mouflih ◽  
Mina Gourai ◽  
Said Sebti

Sedimentary phosphate (SP) was used as an adsorbent for the removal of 2-nitrophenol from aqueous solutions in an attempt to investigate (the feasibility of) its application (to) in wastewater purification.  The adsorbent was characterized by X-ray diffraction (XRD), IR spectroscopy, Fluorescence X and BET.  The results indicated that the SP (was) is francolite (Ca10 (PO4,CO3)6F2) and mesoporous. The effect of the adsorption time and the pH of the solution were studied. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit adsorption data in the kinetic studies. The equilibrium isotherms were determined using the Langmuir, Freundlich and Dubinin-Radushkevich models. The results show that the Dubinin-Radushkevich isotherm had better agreement with the 2-nitrophenol adsorption on SP with a correlation coefficient of 0.98, an equilibrium adsorption capacity of 633 mg. g-1 and a corresponding contact time of 2 h. The results imply that intraparticle diffusion could be summarized as the basic rate-controlling mechanisms during 2-nitrophenol adsorption on SP.


2020 ◽  
Vol 20 (5) ◽  
pp. 2878-2886
Author(s):  
Jia Liu ◽  
Guo-Dong Su ◽  
Zhou Wang

Magnetic Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles were synthesized by the absolute alcohol combustion method. The morphology, microstructure, and composition of as-prepared Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles were characterized by several techniques: the vibrating sample magnetometer (VSM), the scanning electron microscopy (SEM), the X-ray diffraction (XRD), and the energy dispersive spectroscopy (EDS). The experimental results showed that the calcination temperature and the solvent volume were the crucial factors for the synthesis of the magnetic Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles. The adsorption performance of Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles for congo red (CR) was investigated. The model of pseudo-second-order kinetic was optimal matching for obtaining the parameters of adsorption CR in the initial range of 100–400 mg/L−1, while, the isotherm data of CR onto Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles could conform to the Temkin model owing to the values of the square deviations, which revealed that the adsorption of CR onto Ni0.3Mg0.3Zn0.4Fe2O4 nanoparticles at room temperature was the monolayer and multilayer adsorption mechanism.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Duyen Thi Le ◽  
Thao Phuong Thi Le ◽  
Hai Thi Do ◽  
Hanh Thi Vo ◽  
Nam Thi Pham ◽  
...  

Porous hydroxyapatite (HAp) granules have been successfully fabricated from a HAp powder precursor and polyvinyl alcohol (PVA) additive by a simple sintering process. The composition and microstructures of the HAp were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer. The effects of sintering temperature and PVA/HAp mass ratios on color, water stability, morphology, and chemical composition of HAp are discussed. Optimum conditions for the fabrication of HAp granules were found to be a PVA/HAp mass ratio of 3/20 and a sintering temperature of 600°C for 4 h. Accordingly, the obtained HAp is white in color, is in the granular form with a size of about 2 × 10 mm, and has a specific surface area of 70.6 m2/g. The adsorption of Pb2+ onto the as-prepared HAp granules was carried out in aqueous solution by varying the pH, the adsorbent dose, the initial concentration of Pb2+, and the contact time. The results of adsorption stoichiometry of Pb2+ on the HAp granule adsorbent were fitted to the Langmuir adsorption isotherm model (R2 = 0.99). The adsorption capacity and removal efficiency of the HAp granule adsorbent for Pb2+ under optimal conditions were found to be 7.99 mg/g and 95.92%, respectively. The adsorption process obeyed a pseudo-second-order kinetic model with R2∼1. The porous HAp granules studied in this work showed potential for the removal of Pb2+ from industrial wastewater.


Clay Minerals ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 485-496 ◽  
Author(s):  
I. Hamadneh ◽  
R. Abu-Zurayk ◽  
B. Abu-Irmaileh ◽  
A. Bozeya ◽  
A. H. Al-Dujaili

AbstractA comparative study using bentonite (BT), hexadecyltrimethylammonium-modified bentonite (BT-HDTMA) and phenyl fatty hydroxamic acid-modified bentonite (BT-PFHA) as adsorbents for the removal of Pb(II) has been proposed. These adsorbents were characterized by X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy and surface area measurement. Cation exchange capacity was also determined in this study. The adsorbent capabilities for Pb(II) from aqueous solution were investigated, and the optimal experimental conditions including adsorption time, adsorbent dosage, the initial concentration of Pb(II), pH and temperature that might influence the adsorption performance were also investigated. The experimental equilibrium adsorption data were tested by four widely used two-parameter equations, the Langmuir, Freundlich, Dubinin- Radushkevich (D-R) and Temkin isotherms. The monolayer adsorption capacities of BT, BT-HDTMA and BT-PFHA for Pb(II) were 149.3, 227.3 and 256.4 mg/g, respectively. The experimental kinetic data were analysed by pseudo-first order, pseudo-second order and intraparticle diffusion kinetics models. The experimental data fitted very well with the pseudo-second order kinetic model. Determination of the thermodynamic parameters, ΔG, ΔH and ΔS showed the adsorption to be feasible, spontaneous and exothermic.


2016 ◽  
Vol 6 (4) ◽  
pp. 562-573 ◽  
Author(s):  
Farshad Omidvar-Hosseini ◽  
Farid Moeinpour

Acacia Nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized by a low-cost, simple, and environmentally benign procedure. The adsorbent was characterized by several methods including X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. Then, the potential of Acacia Nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles was investigated for adsorption of Pb(II). The effect of different parameters including contact time, pH, adsorbent dosage and initial Pb(II) concentration on the Pb(II) removal yield was studied. The experimental data were fitted well with the pseudo-second order kinetic model (R2 = 0.999). The adsorption isotherm was described well by the Langmuir isotherm (R2 = 0.900) with a maximum monolayer adsorption capacity of 37.6 mg g–1. The process for purifying water treatment presented here is easy using the magnetic nanoparticles. Therefore, this adsorbent was found to be useful and valuable for controlling water pollution due to Pb(II) ions.


Sign in / Sign up

Export Citation Format

Share Document